Your browser doesn't support javascript.
loading
A computational model of cardiac fibroblast signaling predicts context-dependent drivers of myofibroblast differentiation.
Zeigler, A C; Richardson, W J; Holmes, J W; Saucerman, J J.
Afiliação
  • Zeigler AC; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
  • Richardson WJ; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
  • Holmes JW; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
  • Saucerman JJ; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA. Electronic address: jsaucerman@virginia.edu.
J Mol Cell Cardiol ; 94: 72-81, 2016 05.
Article em En | MEDLINE | ID: mdl-27017945
Cardiac fibroblasts support heart function, and aberrant fibroblast signaling can lead to fibrosis and cardiac dysfunction. Yet how signaling molecules drive myofibroblast differentiation and fibrosis in the complex signaling environment of cardiac injury remains unclear. We developed a large-scale computational model of cardiac fibroblast signaling in order to identify regulators of fibrosis under diverse signaling contexts. The model network integrates 10 signaling pathways, including 91 nodes and 134 reactions, and it correctly predicted 80% of independent previous experiments. The model predicted key fibrotic signaling regulators (e.g. reactive oxygen species, tissue growth factor ß (TGFß) receptor), whose function varied depending on the extracellular environment. We characterized how network structure relates to function, identified functional modules, and predicted cross-talk between TGFß and mechanical signaling, which was validated experimentally in adult cardiac fibroblasts. This study provides a systems framework for predicting key regulators of fibroblast signaling across diverse signaling contexts.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador / Transdução de Sinais / Diferenciação Celular / Miofibroblastos / Modelos Biológicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador / Transdução de Sinais / Diferenciação Celular / Miofibroblastos / Modelos Biológicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article