Your browser doesn't support javascript.
loading
Bcl-2 Regulates Reactive Oxygen Species Signaling and a Redox-Sensitive Mitochondrial Proton Leak in Mouse Pancreatic ß-Cells.
Aharoni-Simon, Michal; Shumiatcher, Rose; Yeung, Anthony; Shih, Alexis Z L; Dolinsky, Vernon W; Doucette, Christine A; Luciani, Dan S.
Afiliação
  • Aharoni-Simon M; Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Resea
  • Shumiatcher R; Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Resea
  • Yeung A; Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Resea
  • Shih AZ; Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Resea
  • Dolinsky VW; Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Resea
  • Doucette CA; Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Resea
  • Luciani DS; Department of Surgery (M.A.-S., R.S., A.Y., A.Z.L.S., D.S.L.), Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4; and Department of Pharmacology and Therapeutics (V.W.D.) and Department of Physiology (C.A.D.), Children's Hospital Resea
Endocrinology ; 157(6): 2270-81, 2016 06.
Article em En | MEDLINE | ID: mdl-27070098
ABSTRACT
In pancreatic ß-cells, controlling the levels of reactive oxygen species (ROS) is critical to counter oxidative stress, dysfunction and death under nutrient excess. Moreover, the fine-tuning of ROS and redox balance is important in the regulation of normal ß-cell physiology. We recently demonstrated that Bcl-2 and Bcl-xL, in addition to promoting survival, suppress ß-cell glucose metabolism and insulin secretion. Here, we tested the hypothesis that the nonapoptotic roles of endogenous Bcl-2 extend to the regulation of ß-cell ROS and redox balance. We exposed mouse islet cells and MIN6 cells to the Bcl-2/Bcl-xL antagonist Compound 6 and the Bcl-2-specific antagonist ABT-199 and evaluated ROS levels, Ca(2+) responses, respiratory control, superoxide dismutase activity and cell death. Both acute glucose stimulation and the inhibition of endogenous Bcl-2 progressively increased peroxides and stimulated superoxide dismutase activity in mouse islets. Importantly, conditional ß-cell knockout of Bcl-2 amplified glucose-induced formation of peroxides. Bcl-2 antagonism also induced a mitochondrial proton leak that was prevented by the antioxidant N-acetyl-L-cysteine and, therefore, secondary to redox changes. We further established that the proton leak was independent of uncoupling protein 2 but partly mediated by the mitochondrial permeability transition pore. Acutely, inhibitor-induced peroxides promoted Ca(2+) influx, whereas under prolonged Bcl inhibition, the elevated ROS was required for induction of ß-cell apoptosis. In conclusion, our data reveal that endogenous Bcl-2 modulates moment-to-moment ROS signaling and suppresses a redox-regulated mitochondrial proton leak in ß-cells. These noncanonical roles of Bcl-2 may be important for ß-cell function and survival under conditions of high metabolic demand.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Proteínas Proto-Oncogênicas c-bcl-2 / Células Secretoras de Insulina Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Espécies Reativas de Oxigênio / Proteínas Proto-Oncogênicas c-bcl-2 / Células Secretoras de Insulina Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article