Your browser doesn't support javascript.
loading
Role of nuclear factor of activated T-cells 5 in regulating hypertonic-mediated secretin receptor expression in kidney collecting duct cells.
Chua, Oscar W H; Wong, Kenneth K L; Ko, Ben C; Chung, Sookja K; Chow, Billy K C; Lee, Leo T O.
Afiliação
  • Chua OW; School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
  • Wong KK; School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
  • Ko BC; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
  • Chung SK; Department of Anatomy and the State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; HBHA Research Center, Faculty of Medicine, The University of Hong Kong, China.
  • Chow BK; School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
  • Lee LT; Faculty of Health Sciences, University of Macau, Taipa, Macau, China. Electronic address: LTOLee@umac.mo.
Biochim Biophys Acta ; 1859(7): 922-32, 2016 Jul.
Article em En | MEDLINE | ID: mdl-27080132
ABSTRACT
A growing body of evidence suggests that secretin (SCT) is an important element in the osmoregulatory pathway. It is interesting to note that both SCT and its receptor (SCTR) gene are activated upon hyperosmolality in the kidney. However, the precise molecular mechanisms underlying the induction of the SCTR gene expression in response to changes in osmolality have yet to be clarified. Detailed DNA sequence analysis of the promoter regions of the SCTR gene reveals the presence of multiple osmotic response elements (ORE). The ORE is the binding site of a key osmosensitive transactivator, namely, the nuclear factor of activated T-cells 5 (NFAT5). SCTR and NFAT5 are co-expressed in the kidney cortex and medulla collecting duct cells. We therefore hypothesize that NFAT5 is responsible for modulating SCTR expression in hypertonic environments. In this study, we found hypertonicity stimulates the promoter activities and endogenous gene expression of SCTR in mouse kidney cortex collecting duct cells (M1) and inner medulla collecting duct cells (mIMCD3). The overexpression and silencing of NFAT5 further confirmed it to be responsible for the up-regulation of the SCTR gene under hypertonic conditions. A significant increase in the interaction between NFAT5 and the SCTR promoter was also observed following chromatin immunoprecipitation assay. In vivo, osmotic stress up-regulates the SCTR gene in the kidney cortex and medulla of wild-type mice, but does not do so in NFAT5(+/-) animals. Hence, this study provides comprehensive information on how NFAT5 regulates SCTR expression in different osmotic environments.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Receptores dos Hormônios Gastrointestinais / Receptores Acoplados a Proteínas G / Soluções Hipertônicas / Túbulos Renais Coletores Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Receptores dos Hormônios Gastrointestinais / Receptores Acoplados a Proteínas G / Soluções Hipertônicas / Túbulos Renais Coletores Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article