Your browser doesn't support javascript.
loading
Loss of the mitochondrial protein-only ribonuclease P complex causes aberrant tRNA processing and lethality in Drosophila.
Sen, Aditya; Karasik, Agnes; Shanmuganathan, Aranganathan; Mirkovic, Elena; Koutmos, Markos; Cox, Rachel T.
Afiliação
  • Sen A; Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA.
  • Karasik A; Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA.
  • Shanmuganathan A; Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA.
  • Mirkovic E; Walt Whitman High School, Bethesda, MD, 20817, USA.
  • Koutmos M; Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA markos.koutmos@usuhs.edu.
  • Cox RT; Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD, 20814, USA rachel.cox@usuhs.edu.
Nucleic Acids Res ; 44(13): 6409-22, 2016 07 27.
Article em En | MEDLINE | ID: mdl-27131785
ABSTRACT
Proteins encoded by mitochondrial DNA are translated using mitochondrially encoded tRNAs and rRNAs. As with nuclear encoded tRNAs, mitochondrial tRNAs must be processed to become fully functional. The mitochondrial form of ribonuclease P (mtRNase P) is responsible for 5'-end maturation and is comprised of three proteins; mitochondrial RNase P protein (MRPP) 1 and 2 together with proteinaceous RNase P (PRORP). However, its mechanism and impact on development is not yet known. Using homology searches, we have identified the three proteins composing Drosophila mtRNase P Mulder (PRORP), Scully (MRPP2) and Roswell (MRPP1). Here, we show that each protein is essential and localizes with mitochondria. Furthermore, reducing levels of each causes mitochondrial deficits, which appear to be due at least in part to defective mitochondrial tRNA processing. Overexpressing two members of the complex, Mulder and Roswell, is also lethal, and in the case of Mulder, causes abnormal mitochondrial morphology. These data are the first evidence that defective mtRNase P causes mitochondrial dysfunction, lethality and aberrant mitochondrial tRNA processing in vivo, underscoring its physiological importance. This in vivo mtRNase P model will advance our understanding of how loss of mitochondrial tRNA processing causes tissue failure, an important aspect of human mitochondrial disease.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA Mitocondrial / Proteínas de Drosophila / Proteínas Mitocondriais / Ribonuclease P / 3-Hidroxiacil-CoA Desidrogenases Tipo de estudo: Etiology_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA Mitocondrial / Proteínas de Drosophila / Proteínas Mitocondriais / Ribonuclease P / 3-Hidroxiacil-CoA Desidrogenases Tipo de estudo: Etiology_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article