Your browser doesn't support javascript.
loading
The Peroxisomal NAD Carrier from Arabidopsis Imports NAD in Exchange with AMP.
van Roermund, Carlo W T; Schroers, Martin G; Wiese, Jan; Facchinelli, Fabio; Kurz, Samantha; Wilkinson, Sabrina; Charton, Lennart; Wanders, Ronald J A; Waterham, Hans R; Weber, Andreas P M; Link, Nicole.
Afiliação
  • van Roermund CW; Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 D
  • Schroers MG; Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 D
  • Wiese J; Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 D
  • Facchinelli F; Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 D
  • Kurz S; Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 D
  • Wilkinson S; Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 D
  • Charton L; Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 D
  • Wanders RJ; Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 D
  • Waterham HR; Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 D
  • Weber AP; Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 D
  • Link N; Laboratory Genetic Metabolic Diseases, Laboratory Division, Academic Medical Center, University of Amsterdam, 1105AZ Amsterdam, The Netherlands (C.W.T.v.R., R.J.A.W., H.R.W.); andInstitute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 D
Plant Physiol ; 171(3): 2127-39, 2016 07.
Article em En | MEDLINE | ID: mdl-27208243
ABSTRACT
Cofactors such as NAD, AMP, and Coenzyme A (CoA) are essential for a diverse set of reactions and pathways in the cell. Specific carrier proteins are required to distribute these cofactors to different cell compartments, including peroxisomes. We previously identified a peroxisomal transport protein in Arabidopsis (Arabidopsis thaliana) called the peroxisomal NAD carrier (PXN). When assayed in vitro, this carrier exhibits versatile transport functions, e.g. catalyzing the import of NAD or CoA, the exchange of NAD/NADH, and the export of CoA. These observations raise the question about the physiological function of PXN in plants. Here, we used Saccharomyces cerevisiae to address this question. First, we confirmed that PXN, when expressed in yeast, is active and targeted to yeast peroxisomes. Secondl, detailed uptake analyses revealed that the CoA transport function of PXN can be excluded under physiological conditions due to its low affinity for this substrate. Third, we expressed PXN in diverse mutant yeast strains and investigated the suppression of the mutant phenotypes. These studies provided strong evidences that PXN was not able to function as a CoA transporter or a redox shuttle by mediating a NAD/NADH exchange, but instead catalyzed the import of NAD into peroxisomes against AMP in intact yeast cells.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Monofosfato de Adenosina / Arabidopsis / Proteínas de Arabidopsis / Proteínas de Transporte da Membrana Mitocondrial / NAD Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Monofosfato de Adenosina / Arabidopsis / Proteínas de Arabidopsis / Proteínas de Transporte da Membrana Mitocondrial / NAD Idioma: En Ano de publicação: 2016 Tipo de documento: Article