Transition of Carrier Transport Behaviors with Temperature in Phosphorus-Doped Si Nanocrystals/SiO2 Multilayers.
Nanoscale Res Lett
; 11(1): 346, 2016 Dec.
Article
em En
| MEDLINE
| ID: mdl-27460594
High-conductive phosphorus-doped Si nanocrystals/SiO2(nc-Si/SiO2) multilayers are obtained, and the formation of Si nanocrystals with the average crystal size of 6 nm is confirmed by high-resolution transmission electron microscopy and Raman spectra. The temperature-dependent carrier transport behaviors of the nc-Si/SiO2 films are systematically studied by which we find the shift of Fermi level on account of the changing P doping concentration. By controlling the P doping concentration in the films, the room temperature conductivity can be enhanced by seven orders of magnitude than the un-doped sample, reaching values up to 110 S/cm for heavily doped sample. The changes from Mott variable-range hopping process to thermally activation conduction process with the temperature are identified and discussed.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2016
Tipo de documento:
Article