Your browser doesn't support javascript.
loading
Principles of ipsilateral and contralateral cortico-cortical connectivity in the mouse.
Goulas, Alexandros; Uylings, Harry B M; Hilgetag, Claus C.
Afiliação
  • Goulas A; Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. alexandros.goulas@yahoo.com.
  • Uylings HB; Max Planck Research Group Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany. alexandros.goulas@yahoo.com.
  • Hilgetag CC; Department of Anatomy and Neuroscience, VU University Medical Center, Graduate School Neurosciences Amsterdam, 1007 MB, Amsterdam, The Netherlands.
Brain Struct Funct ; 222(3): 1281-1295, 2017 04.
Article em En | MEDLINE | ID: mdl-27497948
Structural connectivity among cortical areas provides the substrate for information exchange in the cerebral cortex and is characterized by systematic patterns of presence or absence of connections. What principles govern this cortical wiring diagram? Here, we investigate the relation of physical distance and cytoarchitecture with the connectional architecture of the mouse cortex. Moreover, we examine the relation between patterns of ipsilateral and contralateral connections. Our analysis reveals a mirrored and attenuated organization of contralateral connections when compared with ipsilateral connections. Both physical distance and cytoarchitectonic similarity of cortical areas are related to the presence or absence of connections. Notably, our analysis demonstrates that the combination of these factors relates better to cortico-cortical connectivity than each factor in isolation and that the two factors relate differently to ipsilateral and contralateral connectivity. Physical distance is more tightly related to the presence or absence of ipsilateral connections, but its relevance greatly diminishes for contralateral connections, while the contribution of cytoarchitectonic similarity remains relatively stable. Our results, together with similar findings in the cat and macaque cortex, suggest that a common set of principles underlies the macroscale wiring of the mammalian cerebral cortex.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mapeamento Encefálico / Córtex Cerebral / Lateralidade Funcional / Rede Nervosa Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mapeamento Encefálico / Córtex Cerebral / Lateralidade Funcional / Rede Nervosa Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article