Your browser doesn't support javascript.
loading
Store-Operated Ca2+ Entry in Oocytes Modulate the Dynamics of IP3 -Dependent Ca2+ Release From Oscillatory to Tonic.
Courjaret, Raphaël; Dib, Maya; Machaca, Khaled.
Afiliação
  • Courjaret R; Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Doha, Qatar.
  • Dib M; Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Doha, Qatar.
  • Machaca K; Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Doha, Qatar.
J Cell Physiol ; 232(5): 1095-1103, 2017 05.
Article em En | MEDLINE | ID: mdl-27504787
ABSTRACT
Ca2+ signaling is ubiquitous and mediates various cellular functions encoded in its spatial, temporal, and amplitude features. Here, we investigate the role of store-operated Ca2+ entry (SOCE) in regulating the temporal dynamics of Ca2+ signals in Xenopus oocytes, which can be either oscillatory or tonic. Oscillatory Ca2+ release from intracellular stores is typically observed at physiological agonist concentration. When Ca2+ release leads to Ca2+ store depletion, this triggers the activation of SOCE that translates into a low-amplitude tonic Ca2+ signal. SOCE has also been implicated in fueling Ca2+ oscillations when activated at low levels. Here, we show that sustained SOCE activation in the presence of IP3 to gate IP3 receptors (IP3 R) results in a pump-leak steady state across the endoplasmic reticulum (ER) membrane that inhibits Ca2+ oscillations and produces a tonic Ca2+ signal. Tonic signaling downstream of SOCE activation relies on focal Ca2+ entry through SOCE ER-plasma membrane (PM) junctions, Ca2+ uptake into the ER, followed by release through open IP3 Rs at distant sites, a process we refer to as "Ca2+ teleporting." Therefore, sustained SOCE activation in the presence of an IP3 -dependent "leak" pathway at the ER membrane results in a switch from oscillatory to tonic Ca2+ signaling. J. Cell. Physiol. 232 1095-1103, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oócitos / Inositol 1,4,5-Trifosfato / Cálcio / Sinalização do Cálcio Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oócitos / Inositol 1,4,5-Trifosfato / Cálcio / Sinalização do Cálcio Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article