Your browser doesn't support javascript.
loading
Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety.
Atzori, Matteo; Morra, Elena; Tesi, Lorenzo; Albino, Andrea; Chiesa, Mario; Sorace, Lorenzo; Sessoli, Roberta.
Afiliação
  • Atzori M; Dipartimento di Chimica "Ugo Schiff" e INSTM, Università degli Studi di Firenze , Via della Lastruccia 3, I50019 Sesto Fiorentino (Firenze), Italy.
  • Morra E; Dipartimento di Chimica e NIS Centre, Università di Torino , Via P. Giuria 7, I10125 Torino, Italy.
  • Tesi L; Dipartimento di Chimica "Ugo Schiff" e INSTM, Università degli Studi di Firenze , Via della Lastruccia 3, I50019 Sesto Fiorentino (Firenze), Italy.
  • Albino A; Dipartimento di Chimica "Ugo Schiff" e INSTM, Università degli Studi di Firenze , Via della Lastruccia 3, I50019 Sesto Fiorentino (Firenze), Italy.
  • Chiesa M; Dipartimento di Chimica e NIS Centre, Università di Torino , Via P. Giuria 7, I10125 Torino, Italy.
  • Sorace L; Dipartimento di Chimica "Ugo Schiff" e INSTM, Università degli Studi di Firenze , Via della Lastruccia 3, I50019 Sesto Fiorentino (Firenze), Italy.
  • Sessoli R; Dipartimento di Chimica "Ugo Schiff" e INSTM, Università degli Studi di Firenze , Via della Lastruccia 3, I50019 Sesto Fiorentino (Firenze), Italy.
J Am Chem Soc ; 138(35): 11234-44, 2016 09 07.
Article em En | MEDLINE | ID: mdl-27517709
ABSTRACT
In the search for long-lived quantum coherence in spin systems, vanadium(IV) complexes have shown record phase memory times among molecular systems. When nuclear spin-free ligands are employed, vanadium(IV) complexes can show at low temperature sufficiently long quantum coherence times, Tm, to perform quantum operations, but their use in real devices operating at room temperature is still hampered by the rapid decrease of T1 caused by the efficient spin-phonon coupling. In this work we have investigated the effect of different coordination environments on the magnetization dynamics and the quantum coherence of two vanadium(IV)-based potential molecular spin qubits in the solid state by introducing a unique structural difference, i.e., an oxovanadium(IV) in a square pyramidal versus a vanadium(IV) in an octahedral environment featuring the same coordinating ligand, namely, the 1,3-dithiole-2-thione-4,5-dithiolate. This investigation, performed by a combined approach of alternate current (ac) susceptibility measurements and continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) spectroscopies revealed that the effectiveness of the vanadyl moiety in enhancing quantum coherence up to room temperature is related to a less effective mechanism of spin-lattice relaxation that can be quantitatively evaluated by the exponent n (ca. 3) of the temperature dependence of the relaxation rate. A more rapid collapse is observed for the non-oxo counterpart (n = 4) hampering the observation of quantum coherence at room temperature. Record coherence time at room temperature (1.04 µs) and Rabi oscillations are also observed for the vanadyl derivative in a very high concentrated material (5 ± 1%) as a result of the additional benefit provided by the use of a nuclear spin-free ligand.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article