Two-State Reactivity Mechanism of Benzene C-C Activation by Trinuclear Titanium Hydride.
J Am Chem Soc
; 138(35): 11069-72, 2016 09 07.
Article
em En
| MEDLINE
| ID: mdl-27549571
The cleavage of inert C-C bonds is a central challenge in modern chemistry. Multinuclear transition metal complexes would be a desirable alternative because of the synergetic effect of multiple metal centers. In this work, carbon-carbon bond cleavage and rearrangement of benzene by a trinuclear titanium hydride were investigated using density functional theory. The reaction occurs via a novel "two-state reactivity" mechanism. The important elementary steps consist of hydride transfer, benzene coordination, dehydrogenation, oxidative addition, hydride-proton exchange, and reductive elimination. Most importantly, the ground-state potential energy surface switches from nearly degenerate triplet and antiferromagnetic singlet states to a closed-shell singlet state in the dearomatization of benzene, which effectively decreases the activation barrier. Furthermore, the roles of the transition metal centers and hydrides were clarified.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2016
Tipo de documento:
Article