Your browser doesn't support javascript.
loading
Subtle Interactions and Electron Transfer between U(III) , Np(III) , or Pu(III) and Uranyl Mediated by the Oxo Group.
Arnold, Polly L; Dutkiewicz, Michal S; Zegke, Markus; Walter, Olaf; Apostolidis, Christos; Hollis, Emmalina; Pécharman, Anne-Fréderique; Magnani, Nicola; Griveau, Jean-Christophe; Colineau, Eric; Caciuffo, Roberto; Zhang, Xiaobin; Schreckenbach, Georg; Love, Jason B.
Afiliação
  • Arnold PL; EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK. Polly.Arnold@ed.ac.uk.
  • Dutkiewicz MS; EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK.
  • Zegke M; European Commission, Directorate for Nuclear Safety and Security, Joint Research Centre, Postfach 2340, 76125, Karlsruhe, Germany.
  • Walter O; EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK.
  • Apostolidis C; European Commission, Directorate for Nuclear Safety and Security, Joint Research Centre, Postfach 2340, 76125, Karlsruhe, Germany.
  • Hollis E; European Commission, Directorate for Nuclear Safety and Security, Joint Research Centre, Postfach 2340, 76125, Karlsruhe, Germany.
  • Pécharman AF; EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK.
  • Magnani N; EaStCHEM School of Chemistry, University of Edinburgh, The King's Buildings, Edinburgh, EH9 3FJ, UK.
  • Griveau JC; European Commission, Directorate for Nuclear Safety and Security, Joint Research Centre, Postfach 2340, 76125, Karlsruhe, Germany.
  • Colineau E; European Commission, Directorate for Nuclear Safety and Security, Joint Research Centre, Postfach 2340, 76125, Karlsruhe, Germany.
  • Caciuffo R; European Commission, Directorate for Nuclear Safety and Security, Joint Research Centre, Postfach 2340, 76125, Karlsruhe, Germany.
  • Zhang X; European Commission, Directorate for Nuclear Safety and Security, Joint Research Centre, Postfach 2340, 76125, Karlsruhe, Germany. Roberto.Caciuffo@ec.europa.eu.
  • Schreckenbach G; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
  • Love JB; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada. Georg.Schreckenbach@umanitoba.ca.
Angew Chem Int Ed Engl ; 55(41): 12797-801, 2016 10 04.
Article em En | MEDLINE | ID: mdl-27628291
ABSTRACT
A dramatic difference in the ability of the reducing An(III) center in AnCp3 (An=U, Np, Pu; Cp=C5 H5 ) to oxo-bind and reduce the uranyl(VI) dication in the complex [(UO2 )(THF)(H2 L)] (L="Pacman" Schiff-base polypyrrolic macrocycle), is found and explained. These are the first selective functionalizations of the uranyl oxo by another actinide cation. At-first contradictory electronic structural data are explained by combining theory and experiment. Complete one-electron transfer from Cp3 U forms the U(IV) -uranyl(V) compound that behaves as a U(V) -localized single molecule magnet below 4 K. The extent of reduction by the Cp3 Np group upon oxo-coordination is much less, with a Np(III) -uranyl(VI) dative bond assigned. Solution NMR and NIR spectroscopy suggest Np(IV) U(V) but single-crystal X-ray diffraction and SQUID magnetometry suggest a Np(III) -U(VI) assignment. DFT-calculated Hirshfeld charge and spin density analyses suggest half an electron has transferred, and these explain the strongly shifted NMR spectra by spin density contributions at the hydrogen nuclei. The Pu(III) -U(VI) interaction is too weak to be observed in THF solvent, in agreement with calculated predictions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article