Your browser doesn't support javascript.
loading
An Isozyme-specific Redox Switch in Human Brain Glycogen Phosphorylase Modulates Its Allosteric Activation by AMP.
Mathieu, Cécile; Duval, Romain; Cocaign, Angélique; Petit, Emile; Bui, Linh-Chi; Haddad, Iman; Vinh, Joelle; Etchebest, Catherine; Dupret, Jean-Marie; Rodrigues-Lima, Fernando.
Afiliação
  • Mathieu C; From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris.
  • Duval R; From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris.
  • Cocaign A; From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris.
  • Petit E; From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris.
  • Bui LC; From the Université Paris Diderot, Sorbonne Paris Cité, Unité BFA, CNRS UMR 8251, 75013 Paris.
  • Haddad I; ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMPB), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex 05, France.
  • Vinh J; ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMPB), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex 05, France.
  • Etchebest C; INSERM, UMR S1134, Université Paris Diderot, F-75015 Paris.
  • Dupret JM; Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris.
  • Rodrigues-Lima F; Institut National de la Transfusion Sanguine (INTS), 75015 Paris.
J Biol Chem ; 291(46): 23842-23853, 2016 Nov 11.
Article em En | MEDLINE | ID: mdl-27660393
Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Glicogênio Fosforilase Encefálica / Dissulfetos Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Glicogênio Fosforilase Encefálica / Dissulfetos Limite: Animals / Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article