Rapid, Large-Area Synthesis of Hierarchical Nanoporous Silica Hybrid Films on Flexible Substrates.
J Am Chem Soc
; 138(41): 13473-13476, 2016 Oct 19.
Article
em En
| MEDLINE
| ID: mdl-27704816
We report a simple strategy for the creation of large-area nanoporous hybrid films of silica, carbon, and gold on polyethylene terephthalate via photothermal processing. This method enables the selective heating of light-absorbing thin films on low-temperature substrates using sub-millisecond light pulses generated by a xenon flash lamp. The film contains gold nanoparticles as the nanoheaters to convert light energy to heat, a sacrificial block copolymer surfactant to generate mesopores, and cross-linked polyhedral oligomeric silsesquioxane as the silica source to form the skeleton of the porous structure. Hierarchical porous structures are achieved in the films after photothermal treatment, with uniform mesopores (44-48 nm) on the surface and interconnected macropores (>50 nm) underneath resulting from a foaming effect during release of gaseous decomposition products. The loading of gold nanoparticles is up to 43 wt % in the product, with less than 2 wt % organic residue. This rapid and large-area process for the synthetis of porous structures is compatible with roll-to-roll manufacturing for the fabrication of flexible devices.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2016
Tipo de documento:
Article