Your browser doesn't support javascript.
loading
Role of Soft-Tissue Heterogeneity in Computational Models of Deep Brain Stimulation.
Howell, Bryan; McIntyre, Cameron C.
Afiliação
  • Howell B; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
  • McIntyre CC; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA. Electronic address: ccm4@case.edu.
Brain Stimul ; 10(1): 46-50, 2017.
Article em En | MEDLINE | ID: mdl-27720186
BACKGROUND: Bioelectric field models of deep brain stimulation (DBS) are commonly utilized in research and industrial applications. However, the wide range of different representations used for the human head in these models may be responsible for substantial variance in the stimulation predictions. OBJECTIVE: Determine the relative error of ignoring cerebral vasculature and soft-tissue heterogeneity outside of the brain in computational models of DBS. METHODS: We used a detailed atlas of the human head, coupled to magnetic resonance imaging data, to construct a range of subthalamic DBS volume conductor models. We incrementally simplified the most detailed base model and quantified changes in the stimulation thresholds for direct activation of corticofugal axons. RESULTS: Ignoring cerebral vasculature altered predictions of stimulation thresholds by <10%, whereas ignoring soft-tissue heterogeneity outside of the brain altered predictions between -44 % and 174%. CONCLUSIONS: Heterogeneity in the soft tissues of the head, if unaccounted for, introduces a degree of uncertainty in predicting electrical stimulation of neural elements that is not negligible and thereby warrants consideration in future modeling studies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador / Encéfalo / Imageamento por Ressonância Magnética / Estimulação Encefálica Profunda / Modelos Neurológicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Simulação por Computador / Encéfalo / Imageamento por Ressonância Magnética / Estimulação Encefálica Profunda / Modelos Neurológicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article