Your browser doesn't support javascript.
loading
Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.
Sato, Trey K; Tremaine, Mary; Parreiras, Lucas S; Hebert, Alexander S; Myers, Kevin S; Higbee, Alan J; Sardi, Maria; McIlwain, Sean J; Ong, Irene M; Breuer, Rebecca J; Avanasi Narasimhan, Ragothaman; McGee, Mick A; Dickinson, Quinn; La Reau, Alex; Xie, Dan; Tian, Mingyuan; Reed, Jennifer L; Zhang, Yaoping; Coon, Joshua J; Hittinger, Chris Todd; Gasch, Audrey P; Landick, Robert.
Afiliação
  • Sato TK; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Tremaine M; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Parreiras LS; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Hebert AS; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Myers KS; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Higbee AJ; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Sardi M; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • McIlwain SJ; Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Ong IM; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Breuer RJ; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Avanasi Narasimhan R; Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • McGee MA; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Dickinson Q; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • La Reau A; Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Xie D; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Tian M; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Reed JL; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Zhang Y; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Coon JJ; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Hittinger CT; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Gasch AP; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
  • Landick R; DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
PLoS Genet ; 12(10): e1006372, 2016 Oct.
Article em En | MEDLINE | ID: mdl-27741250
ABSTRACT
The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Xilose / Evolução Molecular Direcionada / Proteínas Quinases Ativadas por Mitógeno / Proteínas de Saccharomyces cerevisiae / Proteínas Mitocondriais Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Xilose / Evolução Molecular Direcionada / Proteínas Quinases Ativadas por Mitógeno / Proteínas de Saccharomyces cerevisiae / Proteínas Mitocondriais Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2016 Tipo de documento: Article