Metal-Organic Frameworks Constructed from a New Thiophene-Functionalized Dicarboxylate: Luminescence Sensing and Pesticide Removal.
ACS Appl Mater Interfaces
; 9(17): 15164-15175, 2017 May 03.
Article
em En
| MEDLINE
| ID: mdl-27792875
A family of thiophene-based metal-organic frameworks (MOFs), [Zn(L)(BBI)·(H2O)2] (1) (BBI = 1,1'-(1,4-butanediyl)bis(imidazole)) and [Cd(L)(TPOM)0.75]·xS (2) (TPOM = tetrakis(4-pyridyloxy-methylene) methane, S represents noncoordinated solvent molecules) was constructed by employing a new linear thiophene-functionalized dicarboxylic acid (benzo-(1,2;4,5)-bis(thiophene-2'-carboxylic acid, H2L) to assemble with d10 ions in the presence of a flexible ancillary ligand under solvothermal conditions, which exhibit diverse structures. Most strikingly, both compounds 1 and 2 could be efficient luminescent sensory materials that are highly selective and sensitive to environmental contaminants, especially for Hg(II), Cu(II), Cr(VI), and salicylaldehyde, and yet remain unaffected by other molecules that may coexit. Furthermore, this is the first report on MOF-based sensors capable of recyclable detection of Hg(II), Cr(VI), and salicylaldehyde so far. The luminescent sensing mechanism was studied in detail as well. In addition, compound 2 is one of the rare examples of high-performance MOFs trapping 2,4-dichlorophenol from the wasted methanol solution.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article