Differential Expression of Estrogen Receptor Variants in Response to Inflammation Signals in Human Airway Smooth Muscle.
J Cell Physiol
; 232(7): 1754-1760, 2017 Jul.
Article
em En
| MEDLINE
| ID: mdl-27808402
The prevalence of asthma is higher in pre-pubescent and aging males, and in post-pubertal females, strongly indicating that sex steroids (especially estrogen) may be an important modulator in lung disease. We recently demonstrated that airway smooth muscle (ASM) expresses both alpha and beta forms of the estrogen receptor (ERα and ERß) in males and females, and that these receptors regulate intracellular [Ca2+ ] and ASM contractility. Although both ERα and ERß have multiple splice variants, it is unclear if and how the expression of these variants is modulated under conditions such as chronic inflammation/asthma. In order to test the hypothesis that the differential expression of ERα and ERß variants contributes to the pathogenesis of asthma, we profiled the expression of various ERα and ERß genes in asthmatic and inflamed (TNFα- or IL-13-treated) ASM. Gene expression was assessed at both the mRNA and protein levels in asthmatic ASM cells or non-asthmatic cells treated with TNFα (20 ng/ml) or IL-13 (50 ng/ml). We observed marked variation in the expression of ER isoforms in response to inflammatory stimuli, and in non-asthmatic versus asthmatic ASM. Changes in protein levels of ERα and ERß corresponded with the observed differential mRNA patterns. Pharmacological studies implicate cytosolic (p42/44 MAPK and PI3 K) and nuclear (NFκB, STAT6, and AP-1) signaling pathways as putative mechanisms that mediate and/or regulate effects of inflammation on ER expression. We conclude that variations in ASM ER expression profiles occur with inflammation and that ER variants could contribute to estrogen signaling in airway diseases such as asthma. J. Cell. Physiol. 232: 1754-1760, 2017. © 2016 Wiley Periodicals, Inc.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Receptores de Estrogênio
/
Miócitos de Músculo Liso
/
Inflamação
/
Pulmão
Tipo de estudo:
Risk_factors_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article