Your browser doesn't support javascript.
loading
Ultrashort pulsed laser induced heating-nanoscale measurement of the internal temperature of dielectrics using black-body radiation.
Appl Opt ; 55(29): 8347-8351, 2016 Oct 10.
Article em En | MEDLINE | ID: mdl-27828085
The nanoscale measurement of temperature in the bulk of dielectrics initiated by a single ultrashort laser pulse was first investigated by black-body radiation. A structureless broad continuum emission has been recorded at an interval delay of 2 ns with a temporal gate of 2 ns and spectral resolution of about 0.137 nm, which provides the highest temporal and spectral precision ever. The temporally resolved emission spectrum was proved to be black-body radiation in nature, and temperature was obtained by fitting the radiation with the Planckian formula. Pulse energy was varied from 110 to 270 µJ at 600 fs and a pulse duration of 0.83 ns was also used. The temperature exhibited a small variation with an increasing pulse energy at 600 fs. However, due to the energy transfer from heated electrons to lattice, the temperature was sharply increased at pulse duration of 0.83 ns. It was estimated that heat accumulation started at 0.42-0.47 MHz for a laser pulse at 600 fs, while it was 0.25 MHz for a laser pulse at 0.83 ns.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article