Your browser doesn't support javascript.
loading
In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration.
Suzuki, Keiichiro; Tsunekawa, Yuji; Hernandez-Benitez, Reyna; Wu, Jun; Zhu, Jie; Kim, Euiseok J; Hatanaka, Fumiyuki; Yamamoto, Mako; Araoka, Toshikazu; Li, Zhe; Kurita, Masakazu; Hishida, Tomoaki; Li, Mo; Aizawa, Emi; Guo, Shicheng; Chen, Song; Goebl, April; Soligalla, Rupa Devi; Qu, Jing; Jiang, Tingshuai; Fu, Xin; Jafari, Maryam; Esteban, Concepcion Rodriguez; Berggren, W Travis; Lajara, Jeronimo; Nuñez-Delicado, Estrella; Guillen, Pedro; Campistol, Josep M; Matsuzaki, Fumio; Liu, Guang-Hui; Magistretti, Pierre; Zhang, Kun; Callaway, Edward M; Zhang, Kang; Belmonte, Juan Carlos Izpisua.
Afiliação
  • Suzuki K; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Tsunekawa Y; Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
  • Hernandez-Benitez R; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Wu J; 4700 King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900, Saudi Arabia.
  • Zhu J; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Kim EJ; Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain.
  • Hatanaka F; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
  • Yamamoto M; Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA.
  • Araoka T; Systems Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, California 92037, USA.
  • Li Z; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Kurita M; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Hishida T; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Li M; Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain.
  • Aizawa E; Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC0412, La Jolla, California 92093-0412, USA.
  • Guo S; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Chen S; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Goebl A; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Soligalla RD; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Qu J; Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC0412, La Jolla, California 92093-0412, USA.
  • Jiang T; Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC0412, La Jolla, California 92093-0412, USA.
  • Fu X; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Jafari M; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Esteban CR; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
  • Berggren WT; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Lajara J; Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA.
  • Nuñez-Delicado E; Guangzhou EliteHealth Biological Pharmaceutical Technology Company Ltd, Guangzhou 510005, China.
  • Guillen P; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
  • Campistol JM; Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA.
  • Matsuzaki F; Shiley Eye Institute, Institute for Genomic Medicine, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive #0946, La Jolla, California 92023, USA.
  • Liu GH; Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Magistretti P; Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd, La Jolla, California 92037, USA.
  • Zhang K; Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain.
  • Callaway EM; Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain.
  • Zhang K; Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, no. 135 Guadalupe 30107, Murcia, Spain.
  • Belmonte JC; Fundación Dr. Pedro Guillen, Investigación Biomedica de Clinica CEMTRO, Avenida Ventisquero de la Condesa, 42, 28035 Madrid, Spain.
Nature ; 540(7631): 144-149, 2016 12 01.
Article em En | MEDLINE | ID: mdl-27851729
ABSTRACT
Targeted genome editing via engineered nucleases is an exciting area of biomedical research and holds potential for clinical applications. Despite rapid advances in the field, in vivo targeted transgene integration is still infeasible because current tools are inefficient, especially for non-dividing cells, which compose most adult tissues. This poses a barrier for uncovering fundamental biological principles and developing treatments for a broad range of genetic disorders. Based on clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) technology, here we devise a homology-independent targeted integration (HITI) strategy, which allows for robust DNA knock-in in both dividing and non-dividing cells in vitro and, more importantly, in vivo (for example, in neurons of postnatal mammals). As a proof of concept of its therapeutic potential, we demonstrate the efficacy of HITI in improving visual function using a rat model of the retinal degeneration condition retinitis pigmentosa. The HITI method presented here establishes new avenues for basic research and targeted gene therapies.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Retinose Pigmentar / Genoma / Marcação de Genes / Sistemas CRISPR-Cas / Edição de Genes Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Retinose Pigmentar / Genoma / Marcação de Genes / Sistemas CRISPR-Cas / Edição de Genes Limite: Animals Idioma: En Ano de publicação: 2016 Tipo de documento: Article