Your browser doesn't support javascript.
loading
Identification of transcripts involved in digestion, detoxification and immune response from transcriptome of Empoasca vitis (Hemiptera: Cicadellidae) nymphs.
Shao, En-Si; Lin, Gui-Fang; Liu, Sijun; Ma, Xiao-Li; Chen, Ming-Feng; Lin, Li; Wu, Song-Qing; Sha, Li; Liu, Zhao-Xia; Hu, Xiao-Hua; Guan, Xiong; Zhang, Ling-Ling.
Afiliação
  • Shao ES; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China; China
  • Lin GF; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China.
  • Liu S; Department of Entomology, Iowa State University, Ames, Iowa, United States. Electronic address: sliu@iastate.edu.
  • Ma XL; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China.
  • Chen MF; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China.
  • Lin L; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China.
  • Wu SQ; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China.
  • Sha L; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China.
  • Liu ZX; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China.
  • Hu XH; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China.
  • Guan X; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China.
  • Zhang LL; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, School of Life Science, Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian, PR China. Elect
Genomics ; 109(1): 58-66, 2017 01.
Article em En | MEDLINE | ID: mdl-27867104
ABSTRACT
Tea production has been significantly impacted by the false-eye leafhopper, Empoasca vitis (Göthe), around Asia. To identify the key genes which are responsible for nutrition absorption, xenobiotic metabolism and immune response, the transcriptome of either alimentary tracts or bodies minus alimentary tract of E. vitis was sequenced and analyzed. Over 31 million reads were obtained from Illumina sequencing. De novo sequence assembly resulted in 52,182 unigenes with a mean size of 848nt. The assembled unigenes were then annotated using various databases. Transcripts of at least 566 digestion-, 224 detoxification-, and 288 immune-related putative genes in E. vitis were identified. In addition, relative expression of highly abundant transcripts was verified through quantitative real-time PCR. Results from this investigation provide genomic information about E. vitis, which will be helpful in further study of E. vitis biology and in the development of novel strategies to control this devastating pest.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inativação Metabólica / Digestão / Transcriptoma / Hemípteros / Sistema Imunitário Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inativação Metabólica / Digestão / Transcriptoma / Hemípteros / Sistema Imunitário Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article