Characterization of Lipid A Variants by Energy-Resolved Mass Spectrometry: Impact of Acyl Chains.
J Am Soc Mass Spectrom
; 28(6): 1118-1126, 2017 06.
Article
em En
| MEDLINE
| ID: mdl-27966172
Lipid A molecules consist of a diglucosamine sugar core with a number of appended acyl chains that vary in their length and connectivity. Because of the challenging nature of characterizing these molecules and differentiating between isomeric species, an energy-resolved MS/MS strategy was undertaken to track the fragmentation trends and map genealogies of product ions originating from consecutive cleavages of acyl chains. Generalizations were developed based on the number and locations of the primary and secondary acyl chains as well as variations in preferential cleavages arising from the location of the phosphate groups. Secondary acyl chain cleavage occurs most readily for lipid A species at the 3' position, followed by primary acyl chain fragmentation at both the 3' and 3 positions. In the instances of bisphosphorylated lipid A variants, phosphate loss occurs readily in conjunction with the most favorable primary and secondary acyl chain cleavages. Graphical Abstract á
.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Espectrometria de Massas em Tandem
/
Lipídeo A
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article