Your browser doesn't support javascript.
loading
Robust background modelling in DIALS.
Parkhurst, James M; Winter, Graeme; Waterman, David G; Fuentes-Montero, Luis; Gildea, Richard J; Murshudov, Garib N; Evans, Gwyndaf.
Afiliação
  • Parkhurst JM; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
  • Winter G; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
  • Waterman DG; STFC Rutherford Appleton Laboratory, Didcot OX11 0FA, UK; CCP4, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK.
  • Fuentes-Montero L; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
  • Gildea RJ; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
  • Murshudov GN; Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
  • Evans G; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
J Appl Crystallogr ; 49(Pt 6): 1912-1921, 2016 Dec 01.
Article em En | MEDLINE | ID: mdl-27980508
A method for estimating the background under each reflection during integration that is robust in the presence of pixel outliers is presented. The method uses a generalized linear model approach that is more appropriate for use with Poisson distributed data than traditional approaches to pixel outlier handling in integration programs. The algorithm is most applicable to data with a very low background level where assumptions of a normal distribution are no longer valid as an approximation to the Poisson distribution. It is shown that traditional methods can result in the systematic underestimation of background values. This then results in the reflection intensities being overestimated and gives rise to a change in the overall distribution of reflection intensities in a dataset such that too few weak reflections appear to be recorded. Statistical tests performed during data reduction may mistakenly attribute this to merohedral twinning in the crystal. Application of the robust generalized linear model algorithm is shown to correct for this bias.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2016 Tipo de documento: Article