Your browser doesn't support javascript.
loading
Ultrasmall Yttrium Iron Garnet Nanoparticles with High Coercivity at Low Temperature Synthesized by Laser Ablation and Fragmentation of Pressed Powders.
Schmitz, Tim; Wiedwald, Ulf; Dubs, Carsten; Gökce, Bilal.
Afiliação
  • Schmitz T; Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany.
  • Wiedwald U; Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstr. 1, 47057, Duisburg, Germany.
  • Dubs C; INNOVENT e.V. Technologieentwicklung, Prüssingstr., 27B, 07745, Jena, Germany.
  • Gökce B; Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany.
Chemphyschem ; 18(9): 1125-1132, 2017 May 05.
Article em En | MEDLINE | ID: mdl-28032953
ABSTRACT
Pulsed laser ablation of pressed yttrium iron garnet powders in water is studied and compared to the ablation of a single-crystal target. We find that target porosity is a crucial factor, which has far-reaching implications on nanoparticle productivity. Although nanoparticle size distributions obtained by analytical disc centrifugation and transmission electron microscopy (TEM) are in agreement, X-ray diffraction and energy dispersive X-ray analysis show that only nanoparticles obtained from targets with densities close to that of a bulk target lead to comparable properties. Our findings also show why the gravimetrical measurement of nanoparticle productivity is often flawed and needs to be complemented by colloidal productivity measurements. The synthesized YIG nanoparticles are further reduced in size by laser fragmentation to obtain sizes smaller than 3 nm. Since the particle diameters are close to the YIG lattice constant, these ultrasmall nanoparticles reveal an immense change of the magnetic properties, exhibiting huge coercivity (0.11 T) and irreversibility fields (8 T) at low temperatures.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article