Your browser doesn't support javascript.
loading
Biaxial Strain Transfer in Supported Graphene.
Bousige, C; Balima, F; Machon, D; Pinheiro, G S; Torres-Dias, A; Nicolle, J; Kalita, D; Bendiab, N; Marty, L; Bouchiat, V; Montagnac, G; Souza Filho, A G; Poncharal, P; San-Miguel, A.
Afiliação
  • Bousige C; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumire Matière , F-69622, Villeurbanne, France.
  • Balima F; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumire Matière , F-69622, Villeurbanne, France.
  • Machon D; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumire Matière , F-69622, Villeurbanne, France.
  • Pinheiro GS; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumire Matière , F-69622, Villeurbanne, France.
  • Torres-Dias A; Departamento de Física, Campus Ministro Petrônio Portella, Universidade Federal do Piauí , Teresina, Piauí 64049-550, Brazil.
  • Nicolle J; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumire Matière , F-69622, Villeurbanne, France.
  • Kalita D; Laboratoire Interface Confinement Matériaux et Nanostructures, UMR 7374, 1b rue de la Ferrolerie, 45071 Orléans Cedex 2, France.
  • Bendiab N; Institut Néel, Université Grenoble Alpes , BP 166, Grenoble Cedex 9, 38042, France.
  • Marty L; Institut Néel, Université Grenoble Alpes , BP 166, Grenoble Cedex 9, 38042, France.
  • Bouchiat V; Institut Néel, Université Grenoble Alpes , BP 166, Grenoble Cedex 9, 38042, France.
  • Montagnac G; Institut Néel, Université Grenoble Alpes , BP 166, Grenoble Cedex 9, 38042, France.
  • Souza Filho AG; Univ. Lyon, Université Lyon 1, Laboratoire de Géologie de Lyon, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, BP 7000, 69342 Lyon Cedex 07, France.
  • Poncharal P; Departamento de Física, Universidade Federal do Ceará , Fortaleza, P.O. Box 6030, Ceará 60455-900, Brazil.
  • San-Miguel A; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumire Matière , F-69622, Villeurbanne, France.
Nano Lett ; 17(1): 21-27, 2017 01 11.
Article em En | MEDLINE | ID: mdl-28073255
Understanding the mechanism and limits of strain transfer between supported 2D systems and their substrate is a most needed step toward the development of strain engineering at the nanoscale. This includes applications in straintronics, nanoelectromechanical devices, or new nanocomposites. Here, we have studied the limits of biaxial compressive strain transfer among SiO2, diamond, and sapphire substrates and graphene. Using high pressure-which allows maximizing the adhesion between graphene and the substrate on which it is deposited-we show that the relevant parameter governing the graphene mechanical response is not the applied pressure but rather the strain that is transmitted from the substrate. Under these experimental conditions, we also show the existence of a critical biaxial stress beyond which strain transfer become partial and introduce a parameter, α, to characterize strain transfer efficiency. The critical stress and α appear to be dependent on the nature of the substrate. Under ideal biaxial strain transfer conditions, the phonon Raman G-band dependence with strain appears to be linear with a slope of -60 ± 3 cm-1/% down to biaxial strains of -0.9%. This evolution appears to be general for both biaxial compression and tension for different experimental setups, at least in the biaxial strain range -0.9% < ε < 1.8%, thus providing a criterion to validate total biaxial strain transfer hypotheses. These results invite us to cast a new look at mechanical strain experiments on deposited graphene as well as to other 2D layered materials.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article