Your browser doesn't support javascript.
loading
Highly predictive and interpretable models for PAMPA permeability.
Sun, Hongmao; Nguyen, Kimloan; Kerns, Edward; Yan, Zhengyin; Yu, Kyeong Ri; Shah, Pranav; Jadhav, Ajit; Xu, Xin.
Afiliação
  • Sun H; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA. Electronic address: sunh7@mail.nih.gov.
  • Nguyen K; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA.
  • Kerns E; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA.
  • Yan Z; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA.
  • Yu KR; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA.
  • Shah P; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA.
  • Jadhav A; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA.
  • Xu X; National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA. Electronic address: xin.xu3@nih.gov.
Bioorg Med Chem ; 25(3): 1266-1276, 2017 02 01.
Article em En | MEDLINE | ID: mdl-28082071
Cell membrane permeability is an important determinant for oral absorption and bioavailability of a drug molecule. An in silico model predicting drug permeability is described, which is built based on a large permeability dataset of 7488 compound entries or 5435 structurally unique molecules measured by the same lab using parallel artificial membrane permeability assay (PAMPA). On the basis of customized molecular descriptors, the support vector regression (SVR) model trained with 4071 compounds with quantitative data is able to predict the remaining 1364 compounds with the qualitative data with an area under the curve of receiver operating characteristic (AUC-ROC) of 0.90. The support vector classification (SVC) model trained with half of the whole dataset comprised of both the quantitative and the qualitative data produced accurate predictions to the remaining data with the AUC-ROC of 0.88. The results suggest that the developed SVR model is highly predictive and provides medicinal chemists a useful in silico tool to facilitate design and synthesis of novel compounds with optimal drug-like properties, and thus accelerate the lead optimization in drug discovery.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Orgânicos / Inteligência Artificial / Permeabilidade da Membrana Celular / Modelos Biológicos Tipo de estudo: Diagnostic_studies / Prognostic_studies / Qualitative_research / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Compostos Orgânicos / Inteligência Artificial / Permeabilidade da Membrana Celular / Modelos Biológicos Tipo de estudo: Diagnostic_studies / Prognostic_studies / Qualitative_research / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article