Your browser doesn't support javascript.
loading
Probabilistic Tractography for Topographically Organized Connectomes.
Aydogan, Dogu Baran; Shi, Yonggang.
Afiliação
  • Aydogan DB; Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA.
  • Shi Y; Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA.
Med Image Comput Comput Assist Interv ; 9900: 201-209, 2016 Oct.
Article em En | MEDLINE | ID: mdl-28090602
While tractography is widely used in brain imaging research, its quantitative validation is highly difficult. Many fiber systems, however, have well-known topographic organization which can even be quantitatively mapped such as the retinotopy of visual pathway. Motivated by this previously untapped anatomical knowledge, we develop a novel tractography method that preserves both topographic and geometric regularity of fiber systems. For topographic preservation, we propose a novel likelihood function that tests the match between parallel curves and fiber orientation distributions. For geometric regularity, we use Gaussian distributions of Frenet-Serret frames. Taken together, we develop a Bayesian framework for generating highly organized tracks that accurately follow neuroanatomy. Using multi-shell diffusion images of 56 subjects from Human Connectome Project, we compare our method with algorithms from MRtrix. By applying regression analysis between retinotopic eccentricity and tracks, we quantitatively demonstrate that our method achieves superior performance in preserving the retinotopic organization of optic radiation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vias Visuais / Algoritmos / Conectoma Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vias Visuais / Algoritmos / Conectoma Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2016 Tipo de documento: Article