Your browser doesn't support javascript.
loading
Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning.
Latimer, Luke N; Dueber, John E.
Afiliação
  • Latimer LN; Department of Chemistry, University of California, Berkeley, California.
  • Dueber JE; Department of Bioengineering, University of California, 2151 Berkeley Way, Berkeley, California 94720.
Biotechnol Bioeng ; 114(6): 1301-1309, 2017 06.
Article em En | MEDLINE | ID: mdl-28165133
ABSTRACT
A common challenge in metabolic engineering is rapidly identifying rate-controlling enzymes in heterologous pathways for subsequent production improvement. We demonstrate a workflow to address this challenge and apply it to improving xylose utilization in Saccharomyces cerevisiae. For eight reactions required for conversion of xylose to ethanol, we screened enzymes for functional expression in S. cerevisiae, followed by a combinatorial expression analysis to achieve pathway flux balancing and identification of limiting enzymatic activities. In the next round of strain engineering, we increased the copy number of these limiting enzymes and again tested the eight-enzyme combinatorial expression library in this new background. This workflow yielded a strain that has a ∼70% increase in biomass yield and ∼240% increase in xylose utilization. Finally, we chromosomally integrated the expression library. This library enriched for strains with multiple integrations of the pathway, which likely were the result of tandem integrations mediated by promoter homology. Biotechnol. Bioeng. 2017;114 1301-1309. © 2017 Wiley Periodicals, Inc.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Xilose / Melhoramento Genético / Engenharia Metabólica / Análise do Fluxo Metabólico / Complexos Multienzimáticos Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Xilose / Melhoramento Genético / Engenharia Metabólica / Análise do Fluxo Metabólico / Complexos Multienzimáticos Idioma: En Ano de publicação: 2017 Tipo de documento: Article