Your browser doesn't support javascript.
loading
Phenotype and multipotency of rabbit (Oryctolagus cuniculus) amniotic stem cells.
Borghesi, Jéssica; Mario, Lara Carolina; Carreira, Ana Claudia Oliveira; Miglino, Maria Angélica; Favaron, Phelipe Oliveira.
Afiliação
  • Borghesi J; Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil. jehborghesi@hotmail.com.
  • Mario LC; Orlando Marques de Paiva, 87, Cidade Universitária, Sao Paulo, SP, 05508-270, Brazil. jehborghesi@hotmail.com.
  • Carreira AC; Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
  • Miglino MA; NUCEL (Cell and Molecular Therapy Center) and NETCEM (Center for Studies in Cell and Molecular Therapy), School of Medicine-Chemistry Institute, Biochemistry Department, Sao Paulo University, Sao Paulo, SP, Brazil.
  • Favaron PO; Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
Stem Cell Res Ther ; 8(1): 27, 2017 02 07.
Article em En | MEDLINE | ID: mdl-28173846
BACKGROUND: Stem cells are capable of unlimited self-renewal and are able to remain undifferentiated for extended periods of time prior to their differentiation into specific cell lineages. Because of the issues (ethical and religious) involved in the use of embryonic stem cells and the limited plasticity of adult stem cells, an alternative cell source could be foetal stem cells derived from extra-embryonic tissue, which are highly proliferative, grow in vitro and possess interesting immunogenic characteristics. As a result, the amniotic membrane of several species has been studied as an important new source of stem cells. METHODS: Here, we cultured and characterized mesenchymal progenitor cells derived from the rabbit amniotic membrane, and investigated their differentiation potential. In total, amniotic membranes were collected from eight rabbit foetuses and were isolated by the explant technique. The obtained cells were cultured in DMEM-HIGH glucose and incubated at 37 °C in a humidified atmosphere with 5% CO2. RESULTS: The cells adhered to the culture plates and showed a high proliferative capacity with fibroblast-like morphologies. The cells showed a positive response for markers for the cytoskeleton, mesenchymal stem cells and proliferation, pluripotency and haematopoietic precursor stem cells. However, the cells were negative for CD45, a marker of haematopoietic cells. Furthermore, the cells had the capacity to be induced to differentiate into osteogenic, adipogenic and chondrogenic lineages. In addition, when the cells were injected into nude mice, we did not observe the formation of tumours. CONCLUSIONS: In summary, our results demonstrate that multipotent mesenchymal stem cells can be obtained from the rabbit amniotic membrane for possible use in future cell therapy applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoblastos / Adipócitos / Condrócitos / Células-Tronco Multipotentes / Células-Tronco Mesenquimais / Âmnio Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoblastos / Adipócitos / Condrócitos / Células-Tronco Multipotentes / Células-Tronco Mesenquimais / Âmnio Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article