Your browser doesn't support javascript.
loading
Enhanced hydrogen sorption in a Li-Mg-N-H system by the synergistic role of Li4(NH2)3BH4 and ZrFe2.
Shukla, Vivek; Bhatnagar, Ashish; Soni, Pawan K; Vishwakarma, Alok K; Shaz, M A; Yadav, T P; Srivastava, O N.
Afiliação
  • Shukla V; Hydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi-221005, India. heponsphy@gmail.com.
  • Bhatnagar A; Hydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi-221005, India. heponsphy@gmail.com.
  • Soni PK; Hydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi-221005, India. heponsphy@gmail.com.
  • Vishwakarma AK; Hydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi-221005, India. heponsphy@gmail.com.
  • Shaz MA; Hydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi-221005, India. heponsphy@gmail.com.
  • Yadav TP; Hydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi-221005, India. heponsphy@gmail.com.
  • Srivastava ON; Hydrogen Energy Centre, Department of Physics, Banaras Hindu University, Varanasi-221005, India. heponsphy@gmail.com.
Phys Chem Chem Phys ; 19(14): 9444-9456, 2017 Apr 05.
Article em En | MEDLINE | ID: mdl-28332657
ABSTRACT
The present investigation describes the synergistic role of Li4(BH4)(NH2)3 and ZrFe2 in the hydrogen storage behaviour of a Li-Mg-N-H hydride system. The onset desorption temperature of ZrFe2-catalysed Mg(NH2)2-LiH-Li4(BH4)(NH2)3 is ∼122 °C, which is 83 °C, 63 °C, and 28 °C lower than that of thermally treated 2LiNH2-1MgH2, 2LiNH2-1MgH2-4 wt%ZrFe2, and 2LiNH2-1MgH2-0.1LiBH4 composites, respectively. Native Mg(NH2)2-LiH-Li4(BH4)(NH2)3 absorbed only 2.78 wt% of H2 within 30 min. On the other hand, the ZrFe2-catalysed Mg(NH2)2-LiH-Li4(BH4)(NH2)3 sample absorbed 3.70 wt% of hydrogen within 30 min and 5 wt% of H2 in 6 h at 180 °C and 7 MPa H2 pressure. Mg(NH2)2-LiH-Li4(BH4)(NH2)3 catalyzed with ZrFe2 shows negligible degradation of the storage capacity even after repeated cycles of de/rehydrogenation. The effect of ZrFe2 and Li4(BH4)(NH2)3 on a Mg(NH2)2/LiH composite has been described and discussed with the help of structural (X-ray diffraction), microstructural (electron microscopy), and vibrational modes of molecules through FTIR studies. The present results suggest that an optimum catalysis may originate from the synergistic action of an in situ formed quaternary hydride (Li4(BH4)(NH2)3) and an intermetallic-like ZrFe2, which acts as a pulverizer cum catalyst.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article