Novel contrast mixture improves bladder wall contrast for visualizing bladder injury.
Am J Physiol Renal Physiol
; 313(2): F155-F162, 2017 Aug 01.
Article
em En
| MEDLINE
| ID: mdl-28356290
Here, we tested whether combined contrast-enhanced magnetic resonance imaging (CCE-MRI), using a mixture of gadolinium- and iron oxide-based contrast agents, can segment the bladder wall from the bladder lumen. CCE-MRI relies on the differences in particle size and contrast mechanisms of two agents for improved image contrast. Under isoflurane anesthesia, T1-weighted imaging of adult female Sprague-Dawley rat bladder was performed using standard turbospin echo sequences at 7 Tesla, before and after transurethral instillation of 0.3 ml of single-contrast MRI or CCE-MRI composed of 0.4-64 mM of gadolinium chelate (Gd-DTPA/Gadavist) and 5 mM ferumoxytol. Bladder wall contrast was assessed in the control group exposed to saline and in the bladder injury group exposed to 0.5 ml of protamine sulfate (10 mg/ml) for 30 min. CCE-MRI following instillation of 0.4-4 mM Gd-DTPA and 5 mM ferumoxytol mixture achieved segmentation between the bladder lumen and bladder wall. Hyperintensity in the bladder wall combined with hypointensity in the lumen is consistent with the increased diffusion of the dissolved Gd-DTPA and simultaneous localization of the larger nanoparticles of ferumoxytol in the lumen. The normalized hyperintense signal in the bladder wall increased from 0.46 ± 0.07 in control group to 0.73 ± 0.14 in the protamine sulfate-exposed group (P < 0.0001). CCE-MRI following instillation of contrast mixture identifies bladder wall changes likely associated with bladder injury with improved image contrast.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Compostos Organometálicos
/
Bexiga Urinária
/
Doenças da Bexiga Urinária
/
Imageamento por Ressonância Magnética
/
Meios de Contraste
/
Óxido Ferroso-Férrico
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Ano de publicação:
2017
Tipo de documento:
Article