Your browser doesn't support javascript.
loading
Insights into Substrate Modification by Dehydratases from Type I Polyketide Synthases.
Faille, Alexandre; Gavalda, Sabine; Slama, Nawel; Lherbet, Christian; Maveyraud, Laurent; Guillet, Valérie; Laval, Françoise; Quémard, Annaïk; Mourey, Lionel; Pedelacq, Jean-Denis.
Afiliação
  • Faille A; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France.
  • Gavalda S; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France.
  • Slama N; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France.
  • Lherbet C; ITAV USR 3505, 31106 Toulouse Cedex 1, France.
  • Maveyraud L; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France.
  • Guillet V; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France.
  • Laval F; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France.
  • Quémard A; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France.
  • Mourey L; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France. Electronic address: Lionel.Mourey@ipbs.fr.
  • Pedelacq JD; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse Cedex 04, France. Electronic address: Jean-Denis.Pedelacq@ipbs.fr.
J Mol Biol ; 429(10): 1554-1569, 2017 05 19.
Article em En | MEDLINE | ID: mdl-28377293
ABSTRACT
Dehydration reactions play a crucial role in the de novo biosynthesis of fatty acids and a wide range of pharmacologically active polyketide natural products with strong emphasis on human medicine. The type I polyketide synthase PpsC from Mycobacterium tuberculosis catalyzes key biosynthetic steps of lipid virulence factors phthiocerol dimycocerosates and phenolic glycolipids. Given the insolubility of the natural C28-C30 fatty acyl substrate of the PpsC dehydratase (DH) domain, we investigated its structure-function relationships in the presence of shorter surrogate substrates. Since most enzymes belonging to the (R)-specific enoyl hydratase/hydroxyacyl dehydratase family conduct the reverse hydration reaction in vitro, we have determined the X-ray structures of the PpsC DH domain, both unliganded (apo) and in complex with trans-but-2-enoyl-CoA or trans-dodec-2-enoyl-CoA derivatives. This study provides for the first time a snapshot of dehydratase-ligand interactions following a hydration reaction. Our structural analysis allowed us to identify residues essential for substrate binding and activity. The structural comparison of the two complexes also sheds light on the need for long acyl chains for this dehydratase to carry out its function, consistent with both its in vitro catalytic behavior and the physiological role of the PpsC enzyme.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acil Coenzima A / Policetídeo Sintases / Hidroliases / Mycobacterium tuberculosis Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acil Coenzima A / Policetídeo Sintases / Hidroliases / Mycobacterium tuberculosis Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article