Your browser doesn't support javascript.
loading
Combined impacts of nanoparticles on anammox granules and the roles of EDTA and S2- in attenuation.
Zhang, Zheng-Zhe; Xu, Jia-Jia; Shi, Zhi-Jian; Cheng, Ya-Fei; Ji, Zheng-Quan; Deng, Rui; Jin, Ren-Cun.
Afiliação
  • Zhang ZZ; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
  • Xu JJ; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
  • Shi ZJ; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
  • Cheng YF; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
  • Ji ZQ; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
  • Deng R; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China.
  • Jin RC; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China. Electronic address: jrczju@aliyun.com.
J Hazard Mater ; 334: 49-58, 2017 Jul 15.
Article em En | MEDLINE | ID: mdl-28399429
ABSTRACT
Previous studies investigating the risk of engineered nanoparticles (NPs) to biological wastewater treatment have primarily tested NPs individually; however, limited data are available on the impact of NPs on the anaerobic ammonium oxidation (anammox) process. In this study, the toxicity of CuNPs on anammox granules was investigated individually and in combination with CuONPs or ZnONPs. Exposure to CuNPs at 5mgg-1 suspended solids (SS) decreased the anammox activity to 47.1±8.5%, increased the lactate dehydrogenase level to 110.5±3.4% and increased the extracellular N2H4 concentration by 16-fold but did not cause oxidative stress. The presence of CuONPs or ZnONPs at 5mgg-1 SS did not significantly aggravate or alleviate the toxicity of the CuNPs; however, the introduction of EDTA or S2- could attenuate the adverse effects of the CuNPs, CuONPs and ZnONPs on the anammox granules. EDTA captured Cu ions, whereas S2- shielded and deactivated Cu ions and passivated CuNPs. Therefore, our results indicated that the toxicity of NPs was dependent on the amount of active metal reaching the anammox cells. Overall, the results of this study have filled knowledge gaps and provided insights into the combined toxicity of NPs on anammox biomass.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Enxofre / Ácido Edético / Purificação da Água / Cobre / Nanopartículas Metálicas / Águas Residuárias / Amônia Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Enxofre / Ácido Edético / Purificação da Água / Cobre / Nanopartículas Metálicas / Águas Residuárias / Amônia Idioma: En Ano de publicação: 2017 Tipo de documento: Article