Your browser doesn't support javascript.
loading
TUFT1, a novel candidate gene for metatarsophalangeal osteoarthritis, plays a role in chondrogenesis on a calcium-related pathway.
Sliz, Eeva; Taipale, Mari; Welling, Maiju; Skarp, Sini; Alaraudanjoki, Viivi; Ignatius, Jaakko; Ruddock, Lloyd; Nissi, Ritva; Männikkö, Minna.
Afiliação
  • Sliz E; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.
  • Taipale M; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
  • Welling M; Biocenter Oulu, University of Oulu, Oulu, Finland.
  • Skarp S; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.
  • Alaraudanjoki V; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
  • Ignatius J; Biocenter Oulu, University of Oulu, Oulu, Finland.
  • Ruddock L; Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland.
  • Nissi R; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
  • Männikkö M; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
PLoS One ; 12(4): e0175474, 2017.
Article em En | MEDLINE | ID: mdl-28410428
ABSTRACT
Osteoarthritis (OA) is the most common degenerative joint disorder and genetic factors have been shown to have a significant role in its etiology. The first metatarsophalangeal joint (MTP I) is highly susceptible to development of OA due to repetitive mechanical stress during walking. We used whole exome sequencing to study genetic defect(s) predisposing to familial early-onset bilateral MTP I OA inherited in an autosomal dominant manner. A nonsynonymous single nucleotide variant rs41310883 (c.524C>T, p.Thr175Met) in TUFT1 gene was found to co-segregate perfectly with MTP I OA. The role of TUFT1 and the relevance of the identified variant in pathogenesis of MTP I OA were further assessed using functional in vitro analyses. The variant reduced TUFT1 mRNA and tuftelin protein expression in HEK293 cells. ATDC5 cells overexpressing wild type (wt) or mutant TUFT1 were cultured in calcifying conditions and chondrogenic differentiation was found to be inhibited in both cell populations, as indicated by decreased marker gene expression when compared with the empty vector control cells. Also, the formation of cartilage nodules was diminished in both TUFT1 overexpressing ATDC5 cell populations. At the end of the culturing period the calcium content of the extracellular matrix was significantly increased in cells overexpressing mutant TUFT1 compared to cells overexpressing wt TUFT1 and control cells, while the proteoglycan content was reduced. These data imply that overexpression of TUFT1 in ATDC5 inhibits chondrogenic differentiation, and the identified variant may contribute to the pathogenesis of OA by increasing calcification and reducing amount of proteoglycans in the articular cartilage extracellular matrix thus making cartilage susceptible for degeneration and osteophyte formation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoartrite / Cálcio / Condrogênese / Proteínas do Esmalte Dentário Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoartrite / Cálcio / Condrogênese / Proteínas do Esmalte Dentário Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article