Your browser doesn't support javascript.
loading
Epo reprograms the epigenome of erythroid cells.
Perreault, Andrea A; Benton, Mary Lauren; Koury, Mark J; Brandt, Stephen J; Venters, Bryan J.
Afiliação
  • Perreault AA; Department of Molecular Physiology and Biophysics, Chemical and Physical Biology Program, Vanderbilt Genetics Institute, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN.
  • Benton ML; Department of Biomedical Informatics, Vanderbilt University, Nashville, TN.
  • Koury MJ; Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
  • Brandt SJ; Department of Cancer Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN.
  • Venters BJ; Department of Molecular Physiology and Biophysics, Chemical and Physical Biology Program, Vanderbilt Genetics Institute, Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN. Electronic address: bryan.venters@vanderbilt.edu.
Exp Hematol ; 51: 47-62, 2017 07.
Article em En | MEDLINE | ID: mdl-28410882
The hormone erythropoietin (Epo) is required for erythropoiesis, yet its molecular mechanism of action remains poorly understood, particularly with respect to chromatin dynamics. To investigate how Epo modulates the erythroid epigenome, we performed epigenetic profiling using an ex vivo murine cell system that undergoes synchronous erythroid maturation in response to Epo stimulation. Our findings define the repertoire of Epo-modulated enhancers, illuminating a new facet of Epo signaling. First, a large number of enhancers rapidly responded to Epo stimulation, revealing a cis-regulatory network of Epo-responsive enhancers. In contrast, most of the other identified enhancers remained in an active acetylated state during Epo signaling, suggesting that most erythroid enhancers are established at an earlier precursor stage. Second, we identified several hundred super-enhancers that were linked to key erythroid genes, such as Tal1, Bcl11a, and Mir144/451. Third, experimental and computational validation revealed that many predicted enhancer regions were occupied by TAL1 and enriched with DNA-binding motifs for GATA1, KLF1, TAL1/E-box, and STAT5. Additionally, many of these cis-regulatory regions were conserved evolutionarily and displayed correlated enhancer:promoter acetylation. Together, these findings define a cis-regulatory enhancer network for Epo signaling during erythropoiesis, and provide the framework for future studies involving the interplay of epigenetics and Epo signaling.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Eritropoetina / Células Eritroides / Epigênese Genética / Eritropoese / Reprogramação Celular Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transdução de Sinais / Eritropoetina / Células Eritroides / Epigênese Genética / Eritropoese / Reprogramação Celular Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article