Your browser doesn't support javascript.
loading
Physioxia Promotes the Articular Chondrocyte-Like Phenotype in Human Chondroprogenitor-Derived Self-Organized Tissue.
Anderson, Devon E; Markway, Brandon D; Weekes, Kenneth J; McCarthy, Helen E; Johnstone, Brian.
Afiliação
  • Anderson DE; 1 Department of Orthopaedics & Rehabilitation, Oregon Health & Science University , Portland, Oregon.
  • Markway BD; 1 Department of Orthopaedics & Rehabilitation, Oregon Health & Science University , Portland, Oregon.
  • Weekes KJ; 1 Department of Orthopaedics & Rehabilitation, Oregon Health & Science University , Portland, Oregon.
  • McCarthy HE; 2 School of Biosciences, Cardiff University , Cardiff, United Kingdom .
  • Johnstone B; 1 Department of Orthopaedics & Rehabilitation, Oregon Health & Science University , Portland, Oregon.
Tissue Eng Part A ; 24(3-4): 264-274, 2018 02.
Article em En | MEDLINE | ID: mdl-28474537
INTRODUCTION: Biomaterial-based tissue engineering has not successfully reproduced the structural architecture or functional mechanical properties of native articular cartilage. In scaffold-free tissue engineering systems, cells secrete and organize the entire extracellular matrix over time in response to environmental signals such as oxygen level. In this study, we investigated the effect of oxygen on the formation of neocartilage from human-derived chondrogenic cells. MATERIALS AND METHODS: Articular chondrocytes (ACs) and articular cartilage progenitor cells (ACPs) derived from healthy human adults were guided toward cell condensation by centrifugation onto plate inserts that were uncoated or coated with either agarose or fibronectin. Neocartilage discs were cultured at hyperoxic (20%) or physioxic (5%) oxygen levels, and biochemical, biomechanical, and molecular analyses were used to compare the cartilage produced by ACs versus ACPs. RESULTS: Fibronectin-coated inserts proved optimal for growing cartilaginous discs from both cell types. In comparison with culture in hyperoxia, AC neocartilage cultured at physioxia exhibited a significant increase in chondrogenic gene expression, proteoglycan production, and mechanical properties with a concomitant decrease in collagen content. At both oxygen levels, ACP-derived neocartilage produced tissue with significantly enhanced mechanical properties and collagen content relative to AC-derived neocartilage. Both ACs and ACPs produced substantial collagen II and reduced levels of collagens I and X in physioxia relative to hyperoxia. Neocartilage from ACPs exhibited anisotropic organization characteristic of native cartilage with respect to collagen VI of the pericellular matrix when compared with AC-derived neocartilage; however, only ACs produced abundant surface-localized lubricin. DISCUSSION AND CONCLUSIONS: Guiding human-derived cells toward condensation and subsequent culture in physioxia promoted the articular cartilage tissue phenotype for ACs and ACPs. Unlike ACs, ACPs are clonable and highly expandable while retaining chondrogenicity. The ability to generate large tissues utilizing a scaffold-free approach from a single autologous progenitor cell may represent a promising source of neocartilage destined for cartilage repair.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cartilagem Articular / Condrócitos / Condrogênese Tipo de estudo: Qualitative_research Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cartilagem Articular / Condrócitos / Condrogênese Tipo de estudo: Qualitative_research Limite: Humans Idioma: En Ano de publicação: 2018 Tipo de documento: Article