Your browser doesn't support javascript.
loading
Newborn insula gray matter volume is prospectively associated with early life adiposity gain.
Rasmussen, J M; Entringer, S; Kruggel, F; Cooper, D M; Styner, M; Gilmore, J H; Potkin, S G; Wadhwa, P D; Buss, C.
Afiliação
  • Rasmussen JM; Development, Health and Disease Research Program, University of California, Irvine, CA, USA.
  • Entringer S; Department of Biomedical Engineering, University of California, Irvine, CA, USA.
  • Kruggel F; Department of Pediatrics, University of California, Irvine, CA, USA.
  • Cooper DM; Development, Health and Disease Research Program, University of California, Irvine, CA, USA.
  • Styner M; Department of Pediatrics, University of California, Irvine, CA, USA.
  • Gilmore JH; Charité &Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Medical Psychology, Berlin, Germany.
  • Potkin SG; Department of Biomedical Engineering, University of California, Irvine, CA, USA.
  • Wadhwa PD; Department of Pediatrics, University of California, Irvine, CA, USA.
  • Buss C; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Int J Obes (Lond) ; 41(9): 1434-1439, 2017 09.
Article em En | MEDLINE | ID: mdl-28487552
ABSTRACT

BACKGROUND:

The importance of energy homeostasis brain circuitry in the context of obesity is well established, however, the developmental ontogeny of this circuitry in humans is currently unknown. Here, we investigate the prospective association between newborn gray matter (GM) volume in the insula, a key brain region underlying energy homeostasis, and change in percent body fat accrual over the first six months of postnatal life, an outcome that represents among the most reliable infant predictors of childhood obesity risk.

METHODS:

A total of 52 infants (29 male, 23 female, gestational age at birth=39(1.5) weeks) were assessed using structural MRI shortly after birth (postnatal age at MRI scan=25.9(12.2) days), and serial Dual X-Ray Absorptiometry shortly after birth (postnatal age at DXA scan 1=24.6(11.4) days) and at six months of age (postnatal age at DXA scan 2=26.7(3.3) weeks).

RESULTS:

Insula GM volume was inversely associated with change in percent body fat from birth to six-months postnatal age and accounted for 19% of its variance (ß=-3.6%/S.D., P=0.001). This association was driven by the central-posterior portion of the insula, a region of particular importance for gustation and interoception. The direction of this effect is in concordance with observations in adults, and the results remained statistically significant after adjusting for relevant covariates and potential confounding variables.

CONCLUSIONS:

Altogether, these findings suggest an underlying neural basis of childhood obesity that precedes the influence of the postnatal environment. The identification of plausible brain-related biomarkers of childhood obesity risk that predate the influence of the postnatal obesogenic environment may contribute to an improved understanding of propensity for obesity, early identification of at-risk individuals, and intervention targets for primary prevention.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Córtex Cerebral / Metabolismo Energético / Adiposidade / Obesidade Infantil / Substância Cinzenta Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Female / Humans / Male / Newborn Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Córtex Cerebral / Metabolismo Energético / Adiposidade / Obesidade Infantil / Substância Cinzenta Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Female / Humans / Male / Newborn Idioma: En Ano de publicação: 2017 Tipo de documento: Article