Your browser doesn't support javascript.
loading
Low-Ceiling-Temperature Polymer Microcapsules with Hydrophobic Payloads via Rapid Emulsion-Solvent Evaporation.
Tang, Shijia; Yourdkhani, Mostafa; Possanza Casey, Catherine M; Sottos, Nancy R; White, Scott R; Moore, Jeffrey S.
Afiliação
  • Tang S; Beckman Institute for Advanced Science and Technology, §Department of Materials Science and Engineering, ⊥Department of Aerospace Engineering, and ∥Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.
  • Yourdkhani M; Beckman Institute for Advanced Science and Technology, §Department of Materials Science and Engineering, ⊥Department of Aerospace Engineering, and ∥Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.
  • Possanza Casey CM; Beckman Institute for Advanced Science and Technology, §Department of Materials Science and Engineering, ⊥Department of Aerospace Engineering, and ∥Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.
  • Sottos NR; Beckman Institute for Advanced Science and Technology, §Department of Materials Science and Engineering, ⊥Department of Aerospace Engineering, and ∥Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.
  • White SR; Beckman Institute for Advanced Science and Technology, §Department of Materials Science and Engineering, ⊥Department of Aerospace Engineering, and ∥Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.
  • Moore JS; Beckman Institute for Advanced Science and Technology, §Department of Materials Science and Engineering, ⊥Department of Aerospace Engineering, and ∥Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.
ACS Appl Mater Interfaces ; 9(23): 20115-20123, 2017 Jun 14.
Article em En | MEDLINE | ID: mdl-28544851
We report a microencapsulation procedure based on rapid solvent evaporation to prepare microcapsules with hydrophobic core materials and low-ceiling-temperature polymer shell wall of cyclic poly(phthalaldehyde) (cPPA). We use and compare microfluidic and bulk emulsions. In both methods, rapid solvent evaporation following emulsification resulted in kinetically trapped core-shell microcapsules, whereas slow evaporation resulted in acorn morphology. Through the systematic variation of encapsulation parameters, we found that polymer-to-core weight ratios higher than 1 and polymer concentrations higher than 4.5 wt % in the oil phase were required to obtain a core-shell structure. This microencapsulation procedure enabled the fabrication of microcapsules with high core loading, controlled size, morphology, and stability. This procedure is versatile, allowing for the encapsulation of other hydrophobic core materials, i.e., mineral oil and organotin catalyst, or using an alternative low-ceiling-temperature polymer shell wall, poly(vinyl tert-butyl carbonate sulfone).
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article