Your browser doesn't support javascript.
loading
Effects of Endogenous Oxytocin Receptor Signaling in Nucleus Tractus Solitarius on Satiation-Mediated Feeding and Thermogenic Control in Male Rats.
Ong, Zhi Yi; Bongiorno, Diana M; Hernando, Mary Ann; Grill, Harvey J.
Afiliação
  • Ong ZY; Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
  • Bongiorno DM; Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
  • Hernando MA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
  • Grill HJ; Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
Endocrinology ; 158(9): 2826-2836, 2017 09 01.
Article em En | MEDLINE | ID: mdl-28575174
ABSTRACT
Central oxytocin receptor (OT-R) signaling reduces food intake and increases energy expenditure, but the central sites and mechanisms mediating these effects are unresolved. We showed previously that pharmacological activation of OT-R in hindbrain/nucleus tractus solitarius (NTS) amplifies the intake-inhibitory effects of gastrointestinal (GI) satiation signals. Unexplored were the energetic effects of hindbrain OT-R agonism and the physiological relevance of NTS OT-R signaling on food intake and energy expenditure control. Using a virally mediated OT-R knockdown (KD) strategy and a range of behavioral paradigms, this study examined the role of endogenous NTS OT-R signaling on satiation-mediated food intake inhibition and thermogenic control. Results showed that, compared with controls, NTS OT-R KD rats consumed larger meals, were less responsive to the intake-inhibitory effects of a self-ingested preload, and consumed more chow following a 24-hour fast. These data indicate that NTS OT-R signaling is necessary for normal satiation control. Whereas both control and NTS OT-R KD rats increased core temperature following high-fat diet maintenance (relative to chow maintenance), the percent increase in core temperature was greater in control compared with NTS OT-R KD rats during the light cycle. Hindbrain oxytocin agonist delivery increased core temperature in both control and NTS OT-R KD rats and the percent increase relative to vehicle treatment was not significantly different between groups. Together, data reveal a critical role for endogenous NTS OT-R signaling in mediating the intake-inhibitory effects of endogenous GI satiation signals and in diet-induced thermogenesis.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saciação / Núcleo Solitário / Receptores de Ocitocina / Termogênese / Ingestão de Alimentos Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saciação / Núcleo Solitário / Receptores de Ocitocina / Termogênese / Ingestão de Alimentos Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article