Your browser doesn't support javascript.
loading
Cre/lox Studies Identify Resident Macrophages as the Major Source of Circulating Coagulation Factor XIII-A.
Beckers, Cora M L; Simpson, Kingsley R; Griffin, Kathryn J; Brown, Jane M; Cheah, Lih T; Smith, Kerrie A; Vacher, Jean; Cordell, Paul A; Kearney, Mark T; Grant, Peter J; Pease, Richard J.
Afiliação
  • Beckers CML; From the Leeds Institute for Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, United Kingdom (C.M.L.B., K.R.S., K.J.G., J.M.B., L.T.C., K.A.S., P.A.C., M.T.K., P.J.G., R.J.P.); and Clinical Research Institute of Montreal, McGill University, Canada (J.V.).
  • Simpson KR; From the Leeds Institute for Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, United Kingdom (C.M.L.B., K.R.S., K.J.G., J.M.B., L.T.C., K.A.S., P.A.C., M.T.K., P.J.G., R.J.P.); and Clinical Research Institute of Montreal, McGill University, Canada (J.V.).
  • Griffin KJ; From the Leeds Institute for Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, United Kingdom (C.M.L.B., K.R.S., K.J.G., J.M.B., L.T.C., K.A.S., P.A.C., M.T.K., P.J.G., R.J.P.); and Clinical Research Institute of Montreal, McGill University, Canada (J.V.).
  • Brown JM; From the Leeds Institute for Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, United Kingdom (C.M.L.B., K.R.S., K.J.G., J.M.B., L.T.C., K.A.S., P.A.C., M.T.K., P.J.G., R.J.P.); and Clinical Research Institute of Montreal, McGill University, Canada (J.V.).
  • Cheah LT; From the Leeds Institute for Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, United Kingdom (C.M.L.B., K.R.S., K.J.G., J.M.B., L.T.C., K.A.S., P.A.C., M.T.K., P.J.G., R.J.P.); and Clinical Research Institute of Montreal, McGill University, Canada (J.V.).
  • Smith KA; From the Leeds Institute for Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, United Kingdom (C.M.L.B., K.R.S., K.J.G., J.M.B., L.T.C., K.A.S., P.A.C., M.T.K., P.J.G., R.J.P.); and Clinical Research Institute of Montreal, McGill University, Canada (J.V.).
  • Vacher J; From the Leeds Institute for Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, United Kingdom (C.M.L.B., K.R.S., K.J.G., J.M.B., L.T.C., K.A.S., P.A.C., M.T.K., P.J.G., R.J.P.); and Clinical Research Institute of Montreal, McGill University, Canada (J.V.).
  • Cordell PA; From the Leeds Institute for Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, United Kingdom (C.M.L.B., K.R.S., K.J.G., J.M.B., L.T.C., K.A.S., P.A.C., M.T.K., P.J.G., R.J.P.); and Clinical Research Institute of Montreal, McGill University, Canada (J.V.).
  • Kearney MT; From the Leeds Institute for Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, United Kingdom (C.M.L.B., K.R.S., K.J.G., J.M.B., L.T.C., K.A.S., P.A.C., M.T.K., P.J.G., R.J.P.); and Clinical Research Institute of Montreal, McGill University, Canada (J.V.).
  • Grant PJ; From the Leeds Institute for Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, United Kingdom (C.M.L.B., K.R.S., K.J.G., J.M.B., L.T.C., K.A.S., P.A.C., M.T.K., P.J.G., R.J.P.); and Clinical Research Institute of Montreal, McGill University, Canada (J.V.).
  • Pease RJ; From the Leeds Institute for Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, United Kingdom (C.M.L.B., K.R.S., K.J.G., J.M.B., L.T.C., K.A.S., P.A.C., M.T.K., P.J.G., R.J.P.); and Clinical Research Institute of Montreal, McGill University, Canada (J.V.). R.J.Pease@lee
Arterioscler Thromb Vasc Biol ; 37(8): 1494-1502, 2017 08.
Article em En | MEDLINE | ID: mdl-28596376
OBJECTIVE: To establish the cellular source of plasma factor (F)XIII-A. APPROACH AND RESULTS: A novel mouse floxed for the F13a1 gene, FXIII-Aflox/flox (Flox), was crossed with myeloid- and platelet-cre-expressing mice, and cellular FXIII-A mRNA expression and plasma and platelet FXIII-A levels were measured. The platelet factor 4-cre.Flox cross abolished platelet FXIII-A and reduced plasma FXIII-A to 23±3% (P<0.001). However, the effect of platelet factor 4-cre on plasma FXIII-A was exerted outside of the megakaryocyte lineage because plasma FXIII-A was not reduced in the Mpl-/- mouse, despite marked thrombocytopenia. In support of this, platelet factor 4-cre depleted FXIII-A mRNA in brain, aorta, and heart of floxed mice, where FXIII-Apos cells were identified as macrophages as they costained with CD163. In the integrin αM-cre.Flox and the double copy lysozyme 2-cre.cre.Flox crosses, plasma FXIII-A was reduced to, respectively, 75±5% (P=0.003) and 30±7% (P<0.001), with no change in FXIII-A content per platelet, further consistent with a macrophage origin of plasma FXIII-A. The change in plasma FXIII-A levels across the various mouse genotypes mirrored the change in FXIII-A mRNA expression in aorta. Bone marrow transplantation of FXIII-A+/+ bone marrow into FXIII-A-/- mice both restored plasma FXIII-A to normal levels and replaced aortic and cardiac FXIII-A mRNA, while its transplantation into FXIII-A+/+ mice did not increase plasma FXIII-A levels, suggesting that a limited population of niches exists that support FXIII-A-releasing cells. CONCLUSIONS: This work suggests that resident macrophages maintain plasma FXIII-A and exclude the platelet lineage as a major contributor.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fator XIII / Integrases / Macrófagos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fator XIII / Integrases / Macrófagos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2017 Tipo de documento: Article