Your browser doesn't support javascript.
loading
The adaptation of Escherichia coli cells grown in simulated microgravity for an extended period is both phenotypic and genomic.
Tirumalai, Madhan R; Karouia, Fathi; Tran, Quyen; Stepanov, Victor G; Bruce, Rebekah J; Ott, C Mark; Pierson, Duane L; Fox, George E.
Afiliação
  • Tirumalai MR; Department of Biology & Biochemistry, University of Houston, Houston, TX USA.
  • Karouia F; NASA Ames Research Center, Moffett Field, CA USA.
  • Tran Q; Department of Biology & Biochemistry, University of Houston, Houston, TX USA.
  • Stepanov VG; Department of Biology & Biochemistry, University of Houston, Houston, TX USA.
  • Bruce RJ; NASA Lyndon B. Johnson Space Center, Houston, TX USA.
  • Ott CM; NASA Lyndon B. Johnson Space Center, Houston, TX USA.
  • Pierson DL; NASA Lyndon B. Johnson Space Center, Houston, TX USA.
  • Fox GE; Department of Biology & Biochemistry, University of Houston, Houston, TX USA.
NPJ Microgravity ; 3: 15, 2017.
Article em En | MEDLINE | ID: mdl-28649637
ABSTRACT
Microorganisms impact spaceflight in a variety of ways. They play a positive role in biological systems, such as waste water treatment but can be problematic through buildups of biofilms that can affect advanced life support. Of special concern is the possibility that during extended missions, the microgravity environment will provide positive selection for undesirable genomic changes. Such changes could affect microbial antibiotic sensitivity and possibly pathogenicity. To evaluate this possibility, Escherichia coli (lac plus) cells were grown for over 1000 generations on Luria Broth medium under low-shear modeled microgravity conditions in a high aspect rotating vessel. This is the first study of its kind to grow bacteria for multiple generations over an extended period under low-shear modeled microgravity. Comparisons were made to a non-adaptive control strain using growth competitions. After 1000 generations, the final low-shear modeled microgravity-adapted strain readily outcompeted the unadapted lac minus strain. A portion of this advantage was maintained when the low-shear modeled microgravity strain was first grown in a shake flask environment for 10, 20, or 30 generations of growth. Genomic sequencing of the 1000 generation strain revealed 16 mutations. Of the five changes affecting codons, none were neutral. It is not clear how significant these mutations are as individual changes or as a group. It is concluded that part of the long-term adaptation to low-shear modeled microgravity is likely genomic. The strain was monitored for acquisition of antibiotic resistance by VITEK analysis throughout the adaptation period. Despite the evidence of genomic adaptation, resistance to a variety of antibiotics was never observed.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article