Your browser doesn't support javascript.
loading
Quantifying the Metabolome of Pseudomonas taiwanensis VLB120: Evaluation of Hot and Cold Combined Quenching/Extraction Approaches.
Wordofa, Gossa G; Kristensen, Mette; Schrübbers, Lars; McCloskey, Douglas; Forster, Jochen; Schneider, Konstantin.
Afiliação
  • Wordofa GG; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2800 Lyngby, Denmark.
  • Kristensen M; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2800 Lyngby, Denmark.
  • Schrübbers L; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2800 Lyngby, Denmark.
  • McCloskey D; Department of Bioengineering, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093-0412, United States.
  • Forster J; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2800 Lyngby, Denmark.
  • Schneider K; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK-2800 Lyngby, Denmark.
Anal Chem ; 89(17): 8738-8747, 2017 09 05.
Article em En | MEDLINE | ID: mdl-28727413
ABSTRACT
Absolute quantification of free intracellular metabolites is a valuable tool in both pathway discovery and metabolic engineering. In this study, we conducted a comprehensive examination of different hot and cold combined quenching/extraction approaches to extract and quantify intracellular metabolites of Pseudomonas taiwanensis (P. taiwanensis) VLB120 to provide a useful reference data set of absolute intracellular metabolite concentrations. The suitability of commonly used metabolomics tools including a pressure driven fast filtration system followed by combined quenching/extraction techniques (such as cold methanol/acetonitrile/water, hot water, and boiling ethanol/water, as well as cold ethanol/water) were tested and evaluated for P. taiwanensis VLB120 metabolome analysis. In total 94 out of 107 detected intracellular metabolites were quantified using an isotope-ratio-based approach. The quantified metabolites include amino acids, nucleotides, central carbon metabolism intermediates, redox cofactors, and others. The acquired data demonstrate that the pressure driven fast filtration approach followed by boiling ethanol quenching/extraction is the most adequate technique for P. taiwanensis VLB120 metabolome analysis based on quenching efficiency, extraction yields of metabolites, and experimental reproducibility.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudomonas / Extração em Fase Sólida / Metaboloma / Metabolômica Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pseudomonas / Extração em Fase Sólida / Metaboloma / Metabolômica Idioma: En Ano de publicação: 2017 Tipo de documento: Article