Your browser doesn't support javascript.
loading
Photon-Induced Near-Field Electron Microscopy of Eukaryotic Cells.
Kaplan, Mohammed; Yoo, Byung-Kuk; Tang, Jau; Karam, Tony E; Liao, Bolin; Majumdar, Devdoot; Baltimore, David; Jensen, Grant J; Zewail, Ahmed H.
Afiliação
  • Kaplan M; Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, 91125, USA.
  • Yoo BK; Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, 91125, USA.
  • Tang J; Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, 91125, USA.
  • Karam TE; Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, 91125, USA.
  • Liao B; Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA, 91125, USA.
  • Majumdar D; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
  • Baltimore D; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
  • Jensen GJ; California Institute of Technology, Pasadena, CA, 91125, USA.
  • Zewail AH; Howard Hughes Medical Institute, Pasadena, CA, 91125, USA.
Angew Chem Int Ed Engl ; 56(38): 11498-11501, 2017 09 11.
Article em En | MEDLINE | ID: mdl-28736869
ABSTRACT
Photon-induced near-field electron microscopy (PINEM) is a technique to produce and then image evanescent electromagnetic fields on the surfaces of nanostructures. Most previous applications of PINEM have imaged surface plasmon-polariton waves on conducting nanomaterials. Here, the application of PINEM on whole human cancer cells and membrane vesicles isolated from them is reported. We show that photons induce time-, orientation-, and polarization-dependent evanescent fields on the surfaces of A431 cancer cells and isolated membrane vesicles. Furthermore, the addition of a ligand to the major surface receptor on these cells and vesicles (epidermal growth factor receptor, EGFR) reduces the intensity of these fields in both preparations. We propose that in the absence of plasmon waves in biological samples, these evanescent fields reflect the changes in EGFR kinase domain polarization upon ligand binding.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fótons / Células Eucarióticas Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fótons / Células Eucarióticas Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article