Your browser doesn't support javascript.
loading
On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides.
Opt Express ; 25(11): 12926-12934, 2017 May 29.
Article em En | MEDLINE | ID: mdl-28786644
ABSTRACT
A hybrid integration of nanoplasmonic antennas with silicon nitride waveguides enables miniaturized chips for surface-enhanced Raman spectroscopy at visible and near-infrared wavelengths. This integration can result in high-throughput SERS assays on low sampling volumes. However, current fabrication methods are complex and rely on electron-beam lithography, thereby obstructing the full use of an integrated photonics platform. Here, we demonstrate the electron-beam-free fabrication of gold nanotriangles on deep-UV patterned silicon nitride waveguides using nanosphere lithography. The localized surface-plasmon resonance of these nanotriangles is optimized for Raman excitation at 785 nm, resulting in a SERS substrate enhancement factor of 2.5 × 105. Furthermore, the SERS signal excited and collected through the waveguide is as strong as the free-space excited and collected signal through a high NA objective.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2017 Tipo de documento: Article