Your browser doesn't support javascript.
loading
Preliminary Data on the Interaction between Some Biometals and Oxidative Stress Status in Mild Cognitive Impairment and Alzheimer's Disease Patients.
Balmuș, Ioana-Miruna; Strungaru, Stefan-Adrian; Ciobica, Alin; Nicoara, Mircea-Nicusor; Dobrin, Romeo; Plavan, Gabriel; Ștefanescu, Cristinel.
Afiliação
  • Balmuș IM; Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, 700505 Iasi, Romania.
  • Strungaru SA; Department of Research, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, 700505 Iasi, Romania.
  • Ciobica A; Department of Research, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, 700505 Iasi, Romania.
  • Nicoara MN; Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, 700505 Iasi, Romania.
  • Dobrin R; Department of Psychiatry, Faculty of Medicine, "Gr. T. Popa" University of Medicine and Pharmacy, 16th University Avenue, 700115 Iasi, Romania.
  • Plavan G; Department of Biology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iasi, Carol I Avenue, 20A, 700505 Iasi, Romania.
  • Ștefanescu C; Department of Psychiatry, Faculty of Medicine, "Gr. T. Popa" University of Medicine and Pharmacy, 16th University Avenue, 700115 Iasi, Romania.
Oxid Med Cell Longev ; 2017: 7156928, 2017.
Article em En | MEDLINE | ID: mdl-28811866
ABSTRACT
Increased interest regarding the biometal mechanisms of action and the pathways in which they have regulatory roles was lately observed. Particularly, it was shown that biometal homeostasis dysregulation may lead to neurodegeneration including Alzheimer's disease, Parkinson disease, or prion protein disease, since important molecular signaling mechanisms in brain functions implicate both oxidative stress and redox active biometals. Oxidative stress could be a result of a breakdown in metal-ion homeostasis which leads to abnormal metal protein chelation. In our previous work, we reported a strong correlation between Alzheimer's disease and oxidative stress. Consequently, the aim of the present work was to evaluate some of the biometals' levels (magnesium, manganese, and iron), the specific activity of some antioxidant enzymes (superoxide dismutase and glutathione peroxidase), and a common lipid peroxidation marker (malondialdehyde concentration), in mild cognitive impairment (n = 15) and Alzheimer's disease (n = 15) patients, compared to age-matched healthy subjects (n = 15). We found increased lipid peroxidation effects, low antioxidant defense, low magnesium and iron concentrations, and high manganese levels in mild cognitive impairment and Alzheimer's disease patients, in a gradual manner. These data could be relevant for future association studies regarding the prediction of Alzheimer's disease development risk or circling through stages by analyzing both active redox metals, oxidative stress markers, and the correlations in between.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Oxidativo / Doença de Alzheimer / Disfunção Cognitiva / Metais Tipo de estudo: Prognostic_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Oxidativo / Doença de Alzheimer / Disfunção Cognitiva / Metais Tipo de estudo: Prognostic_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2017 Tipo de documento: Article