Your browser doesn't support javascript.
loading
Alpha 2-adrenergic receptors accelerate Na+/H+ exchange in neuroblastoma X glioma cells.
J Biol Chem ; 262(14): 6750-7, 1987 May 15.
Article em En | MEDLINE | ID: mdl-2883187
ABSTRACT
The regulation of cytoplasmic pH (pHi) was examined in neuroblastoma X glioma hybrid cell-line cells (NG108-15 cells) using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein. The pHi of NG108-15 cells suspended in nominally HCO-3-free, Na+-containing buffer could be reduced by the external application of acetate. The recovery of pHi to its resting value was blocked by the removal of extracellular Na+, by the addition of extra-cellular H+, and by the addition of analogs of amiloride selective for inhibition of Na+/H+ exchange. The rate of recovery of pHi from acid load exhibited an ionic selectivity of Na+ greater than Li+ much greater than K+, and no recovery was observed in N-methyl-D-glucamine+. Tetrodotoxin and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid had no effect on early pHi recovery. These data suggest that Na+/H+ exchange accounts primarily for the recovery of pHi in NG108-15 cells under our experimental conditions. Na+/H+ exchange in NG108-15 cells was accelerated by alpha 2-adrenergic receptors. Thus, (-)epinephrine, but not (+)epinephrine, elicited an intracellular alkalinization which was blocked by the alpha 2-adrenergic receptor selective antagonist yohimbine but not by the alpha 1-adrenergic receptor antagonist, prazosin, nor the beta-adrenergic antagonist, propranolol. Norepinephrine, clonidine, and the clonidine analog, UK-14304, also caused alkalinization of NG108-15 cells, whereas isoproterenol, a beta-adrenergic receptor agonist, and phenylephrine, a selective alpha 1-adrenergic receptor agonist, did not. Manipulations that blocked Na+/H+ exchange blocked the ability of alpha 2-adrenergic agonists to alkalinize the interior of NG108-15 cells without blocking the ability of these agonists to attenuate cAMP accumulation. These findings provide the first direct evidence of modulation of Na+/H+ exchange activity by a receptor linked to inhibition of adenylate cyclase and offer a possible mechanism whereby alpha 2-adrenergic receptors might influence cellular activity apart from changes in cyclic nucleotide metabolism.
Assuntos
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sódio / Epinefrina / Receptores Adrenérgicos alfa / Antagonistas Adrenérgicos alfa / Células Híbridas Limite: Animals Idioma: En Ano de publicação: 1987 Tipo de documento: Article
Buscar no Google
Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sódio / Epinefrina / Receptores Adrenérgicos alfa / Antagonistas Adrenérgicos alfa / Células Híbridas Limite: Animals Idioma: En Ano de publicação: 1987 Tipo de documento: Article