Your browser doesn't support javascript.
loading
Generation and characterization of transgenic mouse mesenchymal stem cell lines expressing hIGF-1 or hG-CSF.
Gonçalves, Gabrielle V M; Silva, Daniela N; Carvalho, Rejane H; Souza, Bruno S F; da Silva, Kátia Nunes; Vasconcelos, Juliana F; Paredes, Bruno D; Nonaka, Carolina K V; Ribeiro-Dos-Santos, Ricardo; Soares, Milena B P.
Afiliação
  • Gonçalves GVM; Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA, 41253-190, Brazil.
  • Silva DN; Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA, 41253-190, Brazil.
  • Carvalho RH; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Salvador, BA, 40296-710, Brazil.
  • Souza BSF; Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA, 41253-190, Brazil.
  • da Silva KN; Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA, 41253-190, Brazil.
  • Vasconcelos JF; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Salvador, BA, 40296-710, Brazil.
  • Paredes BD; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil.
  • Nonaka CKV; Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA, 41253-190, Brazil.
  • Ribeiro-Dos-Santos R; Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rua Waldemar Falcão, 121, Salvador, BA, 40296-710, Brazil.
  • Soares MBP; Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, BA, 41253-190, Brazil.
Cytotechnology ; 70(2): 577-591, 2018 Apr.
Article em En | MEDLINE | ID: mdl-28866844
Mesenchymal stem cells (MSC) are promising tools in the fields of cell therapy and regenerative medicine. In addition to their differentiation potential, MSC have the ability to secrete bioactive molecules that stimulate tissue regeneration. Thus, the overexpression of cytokines and growth factors may enhance the therapeutic effects of MSC. Here we generated and characterized mouse bone marrow MSC lines overexpressing hG-CSF or hIGF-1. MSC lines overexpressing hG-CSF or hIGF-1 were generated through lentiviral vector mediated gene transfer. The expression of hG-CSF or hIGF-1 genes in the clones produced was quantified by qRT-PCR, and the proteins were detected in the cell supernatants by ELISA. The cell lines displayed cell surface markers and differentiation potential into adipocytes, osteocytes and chondrocytes similar to the control MSC cell lines, indicating the conservation of their phenotype even after genetic modification. IGF-1 and G-CSF transgenic cells maintained immunosuppressive activity. Finally, we performed a comparative gene expression analysis by qRT-PCR array in the cell lines expressing hIGF-1 and hG-CSF when compared to the control cells. Our results demonstrate that the cell lines generated may be useful tools for cell therapy and are suitable for testing in disease models.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2018 Tipo de documento: Article