Your browser doesn't support javascript.
loading
Reconstructing cell cycle and disease progression using deep learning.
Eulenberg, Philipp; Köhler, Niklas; Blasi, Thomas; Filby, Andrew; Carpenter, Anne E; Rees, Paul; Theis, Fabian J; Wolf, F Alexander.
Afiliação
  • Eulenberg P; Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany.
  • Köhler N; Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, LMU München, Munich, Germany.
  • Blasi T; Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany.
  • Filby A; Department of Physics, Arnold Sommerfeld Center for Theoretical Physics, LMU München, Munich, Germany.
  • Carpenter AE; Helmholtz Zentrum München-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Munich, Germany.
  • Rees P; Imaging Platform at the Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
  • Theis FJ; Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
  • Wolf FA; Imaging Platform at the Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA.
Nat Commun ; 8(1): 463, 2017 09 06.
Article em En | MEDLINE | ID: mdl-28878212
ABSTRACT
We show that deep convolutional neural networks combined with nonlinear dimension reduction enable reconstructing biological processes based on raw image data. We demonstrate this by reconstructing the cell cycle of Jurkat cells and disease progression in diabetic retinopathy. In further analysis of Jurkat cells, we detect and separate a subpopulation of dead cells in an unsupervised manner and, in classifying discrete cell cycle stages, we reach a sixfold reduction in error rate compared to a recent approach based on boosting on image features. In contrast to previous methods, deep learning based predictions are fast enough for on-the-fly analysis in an imaging flow cytometer.The interpretation of information-rich, high-throughput single-cell data is a challenge requiring sophisticated computational tools. Here the authors demonstrate a deep convolutional neural network that can classify cell cycle status on-the-fly.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Progressão da Doença / Retinopatia Diabética / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Progressão da Doença / Retinopatia Diabética / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article