Your browser doesn't support javascript.
loading
Formulation and evaluation of controlled-release of telmisartan microspheres: In vitro/in vivo study.
Gaur, Praveen Kumar; Mishra, Shikha; Bajpai, Meenakshi.
Afiliação
  • Gaur PK; Department of Pharmaceutics, I.T.S. Paramedical College (Pharmacy), Muradnagar, Ghaziabad, Uttar Pradesh 201206, India. Electronic address: gaurmpharma@rediffmail.com.
  • Mishra S; Department of Pharmacognosy and Phytochemistry, Jamia Hamdard, New Delhi 110062, India.
  • Bajpai M; Department of Pharmaceutics, I.T.S. Paramedical College (Pharmacy), Muradnagar, Ghaziabad, Uttar Pradesh 201206, India.
J Food Drug Anal ; 22(4): 542-548, 2014 Dec.
Article em En | MEDLINE | ID: mdl-28911472
The aim of this work was to design a controlled-release drug-delivery system for the angiotensin-II receptor antagonist drug telmisartan. Telmisartan was encapsulated with different EUDRAGIT polymers by an emulsion solvent evaporation technique and the physicochemical properties of the formulations were characterized. Using a solvent evaporation method, white spherical microspheres with particle sizes of 629.9-792.1 µm were produced. The in vitro drug release was studied in three different pH media (pH 1.2 for 2 hours, pH 6.8 for 4 hours, and pH 7.4 for 18 hours). The formulations were then evaluated for their pharmacokinetic parameters. The entrapment efficiency of these microspheres was between 58.6% and 90.56%. The obtained microspheres showed good flow properties, which were evaluated in terms of angle of repose (15.29-26.32), bulk and tapped densities (0.37-0.53 and 0.43-0.64, respectively), Carr indices and Hausner ratio (12.94-19.14% and 1.14-1.23, respectively). No drug release was observed in the simulated gastric medium up to 2 hours; however, a change in pH from 1.2 to 6.8 increased the drug release. At pH 7.4, formulations with EUDRAGIT RS 100 showed a steady drug release. The microsphere formulation TMRS-3 (i.e., microspheres containing 2-mg telmisartan) gave the highest Cmax value (6.8641 µg/mL) at 6 hours, which was three times higher than Cmax for telmisartan oral suspension (TOS). Correspondingly, the area under the curve for TMRS-3 was 8.5 times higher than TOS. Particle size and drug release depended on the nature and content of polymer used. The drug release mechanism of the TMRS-3 formulation can be explained using the Higuchi model. The controlled release of drug from TMRS-3 also provides for higher plasma drug content and improved bioavailability.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2014 Tipo de documento: Article