Your browser doesn't support javascript.
loading
Excitable Dynamics and Yap-Dependent Mechanical Cues Drive the Segmentation Clock.
Hubaud, Alexis; Regev, Ido; Mahadevan, L; Pourquié, Olivier.
Afiliação
  • Hubaud A; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch 67400, France; Department of Genetics, Harvard Medical School and Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA.
  • Regev I; Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
  • Mahadevan L; Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Departments of Organismic and Evolutionary Biology and Physics, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering and Kavli Institute for Nanobio Science
  • Pourquié O; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch 67400, France; Department of Genetics, Harvard Medical School and Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA; Ha
Cell ; 171(3): 668-682.e11, 2017 Oct 19.
Article em En | MEDLINE | ID: mdl-28942924
ABSTRACT
The periodic segmentation of the vertebrate body axis into somites, and later vertebrae, relies on a genetic oscillator (the segmentation clock) driving the rhythmic activity of signaling pathways in the presomitic mesoderm (PSM). To understand whether oscillations are an intrinsic property of individual cells or represent a population-level phenomenon, we established culture conditions for stable oscillations at the cellular level. This system was used to demonstrate that oscillations are a collective property of PSM cells that can be actively triggered in vitro by a dynamical quorum sensing signal involving Yap and Notch signaling. Manipulation of Yap-dependent mechanical cues is sufficient to predictably switch isolated PSM cells from a quiescent to an oscillatory state in vitro, a behavior reminiscent of excitability in other systems. Together, our work argues that the segmentation clock behaves as an excitable system, introducing a broader paradigm to study such dynamics in vertebrate morphogenesis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Relógios Biológicos / Transdução de Sinais Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Relógios Biológicos / Transdução de Sinais Limite: Animals Idioma: En Ano de publicação: 2017 Tipo de documento: Article