Your browser doesn't support javascript.
loading
Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements.
Mumbach, Maxwell R; Satpathy, Ansuman T; Boyle, Evan A; Dai, Chao; Gowen, Benjamin G; Cho, Seung Woo; Nguyen, Michelle L; Rubin, Adam J; Granja, Jeffrey M; Kazane, Katelynn R; Wei, Yuning; Nguyen, Trieu; Greenside, Peyton G; Corces, M Ryan; Tycko, Josh; Simeonov, Dimitre R; Suliman, Nabeela; Li, Rui; Xu, Jin; Flynn, Ryan A; Kundaje, Anshul; Khavari, Paul A; Marson, Alexander; Corn, Jacob E; Quertermous, Thomas; Greenleaf, William J; Chang, Howard Y.
Afiliação
  • Mumbach MR; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA.
  • Satpathy AT; Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.
  • Boyle EA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA.
  • Dai C; Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
  • Gowen BG; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA.
  • Cho SW; Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.
  • Nguyen ML; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA.
  • Rubin AJ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.
  • Granja JM; Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA.
  • Kazane KR; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA.
  • Wei Y; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA.
  • Nguyen T; Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California, USA.
  • Greenside PG; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA.
  • Corces MR; Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.
  • Tycko J; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA.
  • Simeonov DR; Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA.
  • Suliman N; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA.
  • Li R; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA.
  • Xu J; Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.
  • Flynn RA; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA.
  • Kundaje A; Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.
  • Khavari PA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA.
  • Marson A; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, California, USA.
  • Corn JE; Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.
  • Quertermous T; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA.
  • Greenleaf WJ; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA.
  • Chang HY; Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, California, USA.
Nat Genet ; 49(11): 1602-1612, 2017 Nov.
Article em En | MEDLINE | ID: mdl-28945252
ABSTRACT
The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer-promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular diseases.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças Autoimunes / Doenças Cardiovasculares / Elementos Facilitadores Genéticos / Regiões Promotoras Genéticas / DNA Intergênico / Mutação Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças Autoimunes / Doenças Cardiovasculares / Elementos Facilitadores Genéticos / Regiões Promotoras Genéticas / DNA Intergênico / Mutação Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2017 Tipo de documento: Article